Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
72^45-72^44=72^44(72-1)=72^44*71
72^44-72^43=72^43(72-1)=72^43*71
=>72^45-72^44>72^44-72^43
a) Ta có: 76530 + 76529 = 76529 . (765 + 1) = 76529 . 766
76630 = 76629 . 766
Nhận xét: 76629 > 76529
=> 76629 .
a) Ta có: 76530 + 76529 = 76529 . (765 + 1) = 76529 . 766
76630 = 76629 . 766
Nhận xét: 76629 > 76529
=> 76629 . 766 > > 76529 . 766
Hay 76530 + 76529 < 76630
b và c tương tự như phần a (ko phải mik ko muốn làm mà mình làm thế để bạn tự làm và tốt cho bản thân bạn, chúc bạn học tốt nha! =))
a: 199^20=1568239201^5
2003^15=8036054027^5
=>199^20<2003^15
b: 3^99=27^33>27^21=11^21
Lời giải:
a.
$199^{20}<200^{20}=(2.100)^{20}=2^{20}.10^{40}=(2^{10})^2.10^{40}< (10^4)^2.10^{40}=10^8.10^{40}=10^{48}$
$2003^{15}> 2000^{15}=(2.10^3)^{15}=2^{15}.10^{45}> 2^{10}.10^{45}> 10^3.10^{45}=10^{48}$
$\Rightarrow 199^{20}< 2003^{15}$
b.
$3^{99}=(3^9)^{11}=19683^{11}$
$11^{21}< 11^{22}=(11^2)^{11}=121^{11}$
Hiển nhiên $19683^{11}> 121^{11}$
$\Rightarrow 3^{99}> 121^{11}> 11^{21}$
a) Ta có:
\(199^{20}=\left[\left(199\right)^4\right]^5=1568239201^5\)
\(2003^{15}=\left[\left(2003\right)^3\right]^5=8036054027^5\)
Mà: \(8036054027>1568239201\)
\(\Rightarrow1568239201^5< 8036054027^5\)
\(\Rightarrow199^{20}< 2003^{15}\)
b) Xem lại đề
câu a:(-7)*a lớn hơn hoặc bằng (-10)*a
câu b 15*(a-3) lớn hơn hoặc bằng 11*(a-3)
theo đề bài ta có:
a\(⋮\)b=>a=b.q1(q1\(\in\)N)
b\(⋮\)a=>b=a.q2(q2\(\in\)N)
thay a\(⋮\)b=>a=b.q1 vào b ta có
b=(b.q1).q2
b:b=q1.q2
1=q1.q2
=>a=b.1=b=>a=b
b=a.1=a=>a=b
vạy a=b
19920 > 200315
7245 - 7244 < 7244 - 7243