Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/42 + 1/62 + 1/82 + ... + 1/(2n)2
A = 1/22.(1/22 + 1/32 + 1/42 + ... + n2)
A < 1/22.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/(n-1).n
A < 1/4.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... +1/n-1 - 1/n)
A < 1/4.(1 - 1/n) < 1/4.1
A < 1/4
Bài làm:
Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)
Vậy A = B
có:1/4+1/5+1/6+1/7+...+1/9≤nhỏ hơn 1/6.6=1
1/10+1/11+...+1/15 nhỏ hơn1/5.5=1
⇒1/4+1/5+...+1/15nhỏ hơn1+1=2(đpcm)
ta có
\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}< \dfrac{1}{4}.4\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}< 1\)
và:
\(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{8}.8\)
\(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 1\)
\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{15}< 1+1=2\)
Lời giải:
$A=\frac{1}{2^2}(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1012^2})$
$<\frac{1}{4}(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1011.1012})$
$=\frac{1}{4}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1011}-\frac{1}{1012})$
$=\frac{1}{4}(1-\frac{1}{1012})$
$=\frac{1}{4}-\frac{1}{4.1012}< \frac{1}{4}$