Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
a) \(10^{20}\) và \(9^{10}\)
Vì 10 > 9 ; 20 > 10
nên \(10^{20}>9^{10}\)
Vậy \(10^{20}>9^{10}\)
b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)
Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
Vì 243 > 125 nên \(125^{10}< 243^{10}\)
Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)
c) \(64^8\) và \(16^{12}\)
Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
Vậy \(64^8=16^{12}\left(=4^{24}\right)\)
d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)
\(\left(\frac{1}{16}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
vì 40<50 nên \(\left(\frac{1}{2}\right)^{40}<\left(\frac{1}{2}\right)^{50}\)
hay \(\left(\frac{1}{16}\right)^{10}<\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
Vì \(2^{40}< 2^{50}\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)hay \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(0,3\right)^{20}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
Vì \(0,09< 0,1\Rightarrow\left(0,09\right)^{10}< \left(0,1\right)^{100}\)
hay \(\left(0,3\right)^{20}< \left(0,1\right)^{10}\)
ta có :
\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)
mà \(5^{2017}>5^{2016}\)
\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)
\(\Rightarrow\)\(5^{2017}>25^{1008}\)
có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)
mà \(=25^{1008}\times5\)> \(25^{1008}\)
nên \(5^{2017}>25^{1008}\)
\(\left(\dfrac{7}{2}\right)^{50}=\left(\dfrac{16807}{32}\right)^{10}\)
mà 16807/32>1/16
nên \(\left(\dfrac{1}{16}\right)^{10}< \left(\dfrac{7}{2}\right)^{50}\)
a) 1020 và 9010
ta có: 1020 = (102)10 = 10010
vì 100 > 90 nên 10010 > 9010
vậy 1020 > 9010
b) tương tự nhé
ok mk nhé!!! 5656757567687686712676576568768763575475437445756725676568
\(A< \frac{\left(10^{10}-1\right)+11}{\left(10^{11}-1\right)+11}< \frac{10^{10}+10}{10^{11}+10}< \frac{10\left(10^9+1\right)}{10\left(10^{10}+1\right)}< \frac{10^9+1}{10^{10}+1}\)
\(\Rightarrow A< B\)
Vậy A<B
\(10A=\dfrac{10^{16}+10}{10^{16}+1}=1+\dfrac{9}{10^{16}+1}\)
\(10B=\dfrac{10^{17}+10}{10^{17}+1}=1+\dfrac{9}{10^{17}+1}\)
Vì \(10^{16}+1< 10^{17}+1\)
nên \(\dfrac{9}{10^{16}+1}>\dfrac{9}{10^{17}+1}\)
=>\(1+\dfrac{9}{10^{16}+1}>1+\dfrac{9}{10^{17}+1}\)
=>10A>10B
=>A>B