\(A=\frac{1}{4015}\)
\(B=\frac{2008^2-2007^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

a=b

a>b

a<b

ba câu chắc chắn 1 câu đúng

6 tháng 3 2016

a=b

a>b

a<b

trong 3 câu trên chắc chắn 1 câu đúng

16 tháng 7 2019

Bài 2:

\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)

Với mọi \(n\inℕ^∗\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)

\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)

17 tháng 7 2019

Bài 1: chắc lại phải "liên hợp" gì đó rồi:V

\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)

\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)

Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)

Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)

Với \(n\ge3\). Lời giải xin mời các bạn:)

16 tháng 10 2016

chiu roi

ban oi

tk nhe@@@@@@@@

ai tk minh minh tk lai

28 tháng 7 2016

Bài 2:

\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)

\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{2005}}{-4}\)

\(=\frac{\sqrt{2005}-1}{4}\)

17 tháng 10 2016

lấy máy tính bấm đc 2008

17 tháng 10 2016

kết quả là:2007.000747