Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2015^{2016}-2015^{2015}\)
\(=2015^{2015}\left(2015-1\right)\)
\(=2015^{2015}.2014\)
\(B=2015^{2017}-2015^{2016}\)
\(=2015^{2016}\left(2015-1\right)\)
\(=2015^{2016}.2014\)
Vì \(2015^{2015}< 2015^{2016}\)
nên \(A< B\)
Ta có :
\(2015^{2016}< 2015^{2017}\)
\(2015^{2015}< 2015^{2016}\)
\(\Rightarrow\)\(A=2015^{2016}-2015^{2015}< B=2015^{2017}-2015^{2016}\)
Vậy \(A< B\)
Ta có :
\(A=2015^{2016}-2015^{2015}=2015^{2015}\left(2015-1\right)=2015^{2015}.2014\)
\(B=2015^{2017}-2015^{2016}=2015^{2016}\left(2015-1\right)=2015^{2016}.2014\)
Vì \(2015^{2015}< 2015^{2016}\) nên \(2015^{2015}.2014< 2015^{2016}.2014\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(A=\frac{2015}{2016}+\frac{2016}{2017}=1-\frac{1}{2016}+1-\frac{1}{2017}>1\)
\(B=\frac{2015+2016}{2016+2017}< \frac{2016+2017}{2016+2017}=1\)
Suy ra \(A>B\).
- \(A=\frac{2015}{2016}+\frac{2016}{2017}>1;\)
- \(B=\frac{2015+2016}{2016+2017}< 1\)
- Nên A>B
\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{\left(2015+2016\right)}{\left(2016+2017\right)}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
A=2015/2016+2016/2017+2017/2018>2015/2018+2016/2018+2017/2018
=6048/2018>1
B=2015+2016+2017/2016+2017+2018=6048/6051<1
=>A>B