\(\sqrt{12}-\sqrt{11}\) và \(\sqrt{11}-\sqrt{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

\(\frac{1+\sqrt{3}}{\sqrt{3}-1}=\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=2+\sqrt{3}\)

\(\frac{2}{\sqrt{2}-1}=\frac{2\sqrt{2}+2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=\sqrt{8}+2\)

\(\Rightarrow\frac{2}{\sqrt{2}-1}>\frac{1+\sqrt{3}}{\sqrt{3}-1}\)

27 tháng 6 2017

\(\sqrt{12}-\sqrt{11}\)   bé hơn \(\sqrt{11}-\sqrt{10}\) 

14 tháng 8 2018

a)So sánh vs 5/2

b)So sánh vs 40/9

13 tháng 8 2018

Cho mình KQ xấp xỉ ở các ý

21 tháng 6 2018

\(1)\) Ta có : 

\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)

\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)

Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)

\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Chúc bạn học tốt ~ 

16 tháng 7 2019

Bài 2:

\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)

Với mọi \(n\inℕ^∗\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)

\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)

17 tháng 7 2019

Bài 1: chắc lại phải "liên hợp" gì đó rồi:V

\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)

\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)

Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)

Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)

Với \(n\ge3\). Lời giải xin mời các bạn:)

4 tháng 7 2018

1)  \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)

\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)

2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)

\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)

3)  \(2=\sqrt{4}>\sqrt{3}\)

\(\Rightarrow\)\(2-1>\sqrt{3}-1\)

hay  \(1>\sqrt{3}-1\)

4)  \(9-4\sqrt{5}< 16\)

5) \(\sqrt{2}>\sqrt{1}=1\)

\(\Rightarrow\)\(\sqrt{2}+1>2\)

5 tháng 7 2018

Cảm ơn bạn nhiều nha!

18 tháng 8 2016

a/ Với x = \(23-12\sqrt{3}\) ta có:

\(x-11=23-12\sqrt{3}-11=12-12\sqrt{3}=12\left(1-\sqrt{3}\right)\) 

\(\sqrt{x-2}-3=\sqrt{23-12\sqrt{3}-2}-3=\sqrt{21-12\sqrt{3}}-3=\sqrt{3^2-2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}-3=\sqrt{\left(3-2\sqrt{3}\right)^2}-3=2\sqrt{3}-6\)                        \(=2\sqrt{3}\left(1-\sqrt{3}\right)\)

=>\(\frac{x-11}{\sqrt{x-2}-3}=\frac{12\left(1-\sqrt{3}\right)}{2\sqrt{3}\left(1-\sqrt{3}\right)}=\frac{12}{2\sqrt{3}}=\frac{2\sqrt{3}.2\sqrt{3}}{2\sqrt{3}}=2\sqrt{3}\)

18 tháng 8 2016

b/ \(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}=\frac{1-\sqrt{a}}{2\left(1-a\right)}+\frac{1+\sqrt{a}}{2\left(1-a\right)}-\frac{a^2+2}{\left(1-a\right)\left(1-a+a^2\right)}\)

=\(\frac{2}{2\left(1-a\right)}-\frac{a^2+2}{\left(1-a\right)\left(1-a+a^2\right)}=\frac{1-a+a^2-a^2-2}{\left(1-a\right)\left(1-a+a^2\right)}=\frac{-a-1}{1-a^3}\)

Thay : \(a=\sqrt{2}tacó:\)

\(\frac{-\sqrt{2}-1}{1-\sqrt{2}^3}=\frac{-\left(1+\sqrt{2}\right)}{1-2\sqrt{2}}\)