Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
98 <1
99
98.99+1 Vì 98.99+1 >98.99 nên 98.99+1 >1
98.99 98.99
Suy ra: 98 < 98.99+1
99 98.99
A= \(\frac{98}{99}\)< \(1\)
B= \(\frac{98.99+1}{98.99}\)=\(\frac{98.99}{98.99}+\frac{1}{98.99}\)=\(1+\frac{1}{98.99}\)> 1
=> A<1<B => A<B
Bài 1:
Ta thấy A < 1
=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)
Vậy A < B
Bài 2:
Ta thấy C < 1
=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)
Vậy C < D
A=\(\frac{98^{99}+1}{98^{89}+1}>1\) =>\(A=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}\)
\(=\frac{98.\left(98^{98}+1\right)}{98.\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)
Vậy C>D
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}\)
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+17}{17^{19}+17}\)
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{17}+1}{17^{18}+1}=B\)
=> A < B
\(A=\frac{-\left(98^{98}+1\right)}{-\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}\)
\(B=\frac{98^{99}+1}{98^{89}+1}\)
A-1=\(\frac{98^{98}-98^{88}}{98^{88}+1}=\frac{98^{88}.\left(98^{10}-1\right)}{98^{88}+1}\)
B-1=\(\frac{98^{99}-98^{89}}{98^{89}+1}=\frac{98^{89}.\left(98^{10}-1\right)}{98^{89}+1}\)
=>\(\frac{A-1}{B-1}=\frac{98^{88}.\left(98^{10}-1\right)}{98^{88}+1}.\frac{98^{89}+1}{98^{89}.\left(98^{10}-1\right)}=\frac{98^{89}+1}{98.\left(98^{88}+1\right)}=\frac{98^{89}+1}{98^{89}+98}< 1\)
->A-1<B-1
->A<B
\(\frac{9^{99}-1}{-9^{98}+1}\) < \(\frac{-9^{98}-1}{9^{97+1}}\)
Do \(\frac{98}{99}< 1\)
Mà \(\frac{99.98+1}{98.99}=\frac{9703}{9702}>1\)
Nên \(\frac{98}{99}< \frac{99.98+1}{98.99}\)
Vậy A < B
Ai thấy tớ đúng k nha
Ta có
\(A=\frac{98}{99}=\frac{98.98}{99.98};B=\frac{99.98+1}{98.99}\)
\(\Rightarrow98.98< 99.98+1\)
\(\Rightarrow\frac{98.98}{99.98}< \frac{99.98+1}{98.99}\)
\(\Rightarrow A< B\)