K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017
k² > k² - 1 = (k-1)(k+1)
⇒ 1/k² < 1/[(k-1).(k+1)] = [1/(k-1) - 1/(k+1)]/2 (*)

Áp dụng (*), ta có:
1/2² + 1/3² + 1/4² + ... + 1/n²
< 1/2² + 1/(2.4) + 1/(3.5) + ... + 1/[(n-1).(n+1)]
= 1/2² + [1/2 - 1/4 + 1/3 - 1/5 + ... + 1/(n-1) - 1/(n+1)]/2
= 1/2² + [1/2 + 1/3 - 1/n - 1/(n+1)]/2
= 2/3 - [1/n + 1/(n+1)]/2 <2/3<1
1 tháng 4 2017

Vì:\(\dfrac{1}{2^{^2}}>\dfrac{1}{1.2};\dfrac{1}{3^{^2}}>\dfrac{1}{2.3};\dfrac{1}{4^{^2}}>\dfrac{1}{3.4};...;\dfrac{1}{n^{^2}}>\dfrac{1}{\left(n-1\right)n}\)

\(\Rightarrow A>\dfrac{1 }{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\Rightarrow A>\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Rightarrow A>\dfrac{1}{1}-\dfrac{1}{n}\)

....

Tự lập luận làm tiếp

27 tháng 12 2021

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}\\ A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\left(\dfrac{1}{n}>0\right)\)

1 tháng 11 2023

1/32< 1/2.3

1/42< 1/3.4

...

1/1002< 1/99.100

=> 1/22 + 1/32 + 1/42 + ... + 1/1002< 1/22 + 1/2.3 + 1/3.4 + ... + 1/99.100

A < 1/4 + 1/2 -1/3 + 1/3 - 1/4 +... + 1/99 - 1/100

A < 1/4 + 1/2 -1/100 < 1/4 + 1/2 = 3/4

=> A < 3/4

9 tháng 2 2023

Ta có:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

...

\(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\)

\(\Rightarrow P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n-1\right)}\)

\(\Rightarrow P< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Rightarrow P< 1-\dfrac{1}{n}< 1\)

\(\Rightarrow P< 1\)

NV
29 tháng 7 2021

\(M=1-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)

Đặt \(N=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)

\(2N=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2N-N=1-\dfrac{1}{2^{10}}\)

\(\Rightarrow N=1-\dfrac{1}{2^{10}}\)

\(\Rightarrow M=1-\left(1-\dfrac{1}{2^{10}}\right)=\dfrac{1}{2^{10}}>\dfrac{1}{2^{11}}\)

Vậy \(M>\dfrac{1}{2^{11}}\)

29 tháng 7 2021

em cảm ơn ạ 

A=(1/2^2-1) (1/3^2-1) (1/4^2-1) .... (1/100^2-1)

A=(1/2^2-2^2/2^2) (1/3^2-3^2/3^2) ...... (1/100^2-100^2/100^2)

A=1-2^2/2^2 . 1-3^2/3^2 .... 1-100^2/100^2

A=-(2^2-1/2^2 . 3^2-1/3^2 ..... 100^2-1/100^2)

A=-(1.3/2^2 x 2.4/3^2 ..... 99.101/100^2)

A=-(1.3.2.4.....99.101/2.2.3.3.....100.100)

A=-[(1.2.3....99).(3.4.5.....101) / (2.3.4...100) . (2.3.4...100) ]

A=-101/200 < -1/2

16 tháng 7 2023

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

28 tháng 2 2021

Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.

Xét:

`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`

`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`

`=>A+B>2`

Mà `1 2013/2014<2`

`=>A+B>1 2013/2014`

20 tháng 9 2023

\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)

\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)

\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)

\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)

\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)

\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)

\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\) 

Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)

\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)

\(\Rightarrow B< \dfrac{1}{2}\)