Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\sqrt{170}>\sqrt{169}\\\)
mà \(\sqrt{169}=13\)
=> \(\sqrt{170}>13\)
b) Ta có \(\sqrt{6}< \sqrt{9}\)
mà \(\sqrt{9}=3\)
=> \(\sqrt{6}< 3\)
c) ta có \(\sqrt{226}>\sqrt{225}\)
mà \(\sqrt{225}=15\)
=>\(\sqrt{226}>15\)
d) \(\sqrt{12}>\sqrt{7}\)
e)
Ta có\(\sqrt{150}< \sqrt{180}\)
mà \(\sqrt{150}=5\sqrt{6}\)
\(\sqrt{180}=6\sqrt{5}\)
=> \(5\sqrt{6}< 6\sqrt{5}\)
a) có \(\sqrt{2}\) <\(\sqrt{3}\)
5= \(\sqrt{25}\) >\(\sqrt{11}\)
=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
b)có \(\sqrt{21}>\sqrt{20}\)
-\(\sqrt{5}\) >-\(\sqrt{6}\)
=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)
\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
mà \(-2\sqrt{105}>-2\sqrt{120}\)
nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)
\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)
mà \(4< 6\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)
Mít cứ bình phương lên là ok
(2\(\sqrt{7}\))2 =28 (1)
(3\(\sqrt{3}\))2 =27 (2)
vậy (1) > (2)
cứ thế mà làm là hết mít
a) Ta có 290>289
<=> \(\sqrt{290}\) > \(\sqrt{289}\)
<=> \(\sqrt{290}\) > 17
Vậy ..........
\(a,290>289\)
\(\Rightarrow\sqrt{290}>\sqrt{289}\)
\(\Rightarrow\sqrt{290}>17\)
\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
a/ \(\sqrt{10}< \sqrt{16}=4\)
b/ \(\sqrt{40}>\sqrt{36}=4\)
c/ \(\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}=4+5=9\)
d/ \(3\sqrt{2}=\sqrt{18}< \sqrt{20}=2\sqrt{5}\)
a) \(\sqrt{10}\)và 4
4 = \(\sqrt{16}\)
Do \(\sqrt{16}>\sqrt{10}\)nên \(4>\sqrt{10}\)
b) \(\sqrt{40}\)và 6
6 = \(\sqrt{36}\)
Do \(\sqrt{40}>\sqrt{36}\)nên\(\sqrt{40}>6\)
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
a) Vì a - 5 ≥ b - 5 => a - 5 + 5 ≥ b - 5 + 5
=> a ≥ b
b) Vì 15 + a ≤ 15 + b => 15 + a -15 ≤ 15 + b -15
=> a ≤ b