K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

a) Ta có: \(3\sqrt{2}=\sqrt{3^2.2}=\)\(\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}\)

Do \(\sqrt{18}>\sqrt{12}=>3\sqrt{2}>2\sqrt{3}\)

b) tương tự trên

11 tháng 8 2017

bạn thử bình phương 2 vế lên rùi so sánh

so sánh song thì kết luận

30 tháng 8 2016

a) Ta có \(\sqrt{170}>\sqrt{169}\\\)

mà \(\sqrt{169}=13\)

=> \(\sqrt{170}>13\)

b) Ta có \(\sqrt{6}< \sqrt{9}\)

mà \(\sqrt{9}=3\)

=> \(\sqrt{6}< 3\)

c) ta có \(\sqrt{226}>\sqrt{225}\)

mà \(\sqrt{225}=15\)

=>\(\sqrt{226}>15\)

d) \(\sqrt{12}>\sqrt{7}\)

e)

Ta có\(\sqrt{150}< \sqrt{180}\)

mà \(\sqrt{150}=5\sqrt{6}\)

\(\sqrt{180}=6\sqrt{5}\)

=> \(5\sqrt{6}< 6\sqrt{5}\)

17 tháng 8 2020

a < b < c < d < m

=> a + d < c + m + n

=> 3 ( a + d ) < a + b + c + d + m + n

\(\Rightarrow\frac{3\left(a+d\right)}{a+b+c+d+m+n}< 1\)

\(\Rightarrow\frac{a+d}{a+b+c+d+m+n}< \frac{1}{3}\) ( Đpcm )

27 tháng 10 2016

2410 là 2410

27 tháng 11 2016

a)>

b)<

c)>

27 tháng 11 2016

a, >

b, <

c, >

29 tháng 7 2017

a) 63 

36 = 32.3 = ( 32)3 = 93 

Do 6 < 9 nên 63 < 93 hay 63 < 36

^^

31 tháng 7 2017

a) 63 = 63

    36 =( 32)3 = 93

Vì 9 > 6 nên 9> 63 hay 36 > 63

21 tháng 10 2016

a)Ta có:\(3^{30}=\left(3^3\right)^{10}=27^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}\)

\(27^{10}>25^{10}\Rightarrow3^{30}>5^{20}\)

21 tháng 10 2016
3\(^{30}\)5\(^{20}\)
\(3^{30}=3^{3.10}=\left(3^{ }3\right)^{10}=27^{10}\)
\(5^{20}=5^{2.10}=\left(5^2\right)^{10}=25^{10}\)

Do 27>25 nên \(27^{10}>25^{10}\)\(hay\) \(3^{30}>5^{20}\)

còn câu b thì mk chưa tính ra

23 tháng 7 2017

Ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+c}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\) (1)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{3a^6+c^6}{3b^6+d^6}\)(2)

Từ (1) ; (2) \(\Rightarrow\frac{\left(a+c\right)^6}{\left(b+d\right)^6}=\frac{3a^6+c^6}{3b^6+d^6}\) (đpcm)

a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)

\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

mà \(-2\sqrt{105}>-2\sqrt{120}\)

nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)

\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)

mà \(4< 6\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)