Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=1.3.5.7...99\)
\(R=\frac{1.2.3.4.5.6.7.8...99.100}{2.4.6.8...100}\)
\(R=\frac{1.2.3.4.5.6..8...99.100}{\left(2.2.2.2...2\right).\left(1.2.3.4...50\right)}\)
\(R=\frac{51.52.53...100}{2.2.2.2...2}\)
\(R=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=S\)
Vậy R = S
Lời giải:
\(A=1.3.5.7...99=\frac{1.2.3.4...99.100}{2.4.6.8.100}=\frac{1.2.3...99.100}{(1.2)(2.2)(3.2)...(50.2)}\)
\(=\frac{1.2.3...99.100}{(1.2.3...50).2^{50}}=\frac{51.52...100}{2^{50}}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}=B\)
bang nhau
Giai:
A=1.3.5.7...97.99=\(\frac{\left(1.3.5...97.99\right).\left(2.4.6...100\right)}{2.4.6...100}\)
=\(\frac{1.2.3.4...99.100}{\left(1.2\right).\left(2.2\right)...\left(2.50\right)}\)
=\(\frac{\left(1.2.3...50\right).\left(51.52...99.100\right)}{\left(1.2.3...49.50\right).2^{50}}\)
=\(\frac{51.52...99.100}{2.2...2.2}\)
=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
mà B=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
Nên A=B
Vậy A=B
\(1.3.5.7...97.99=\frac{100!}{2.4.6.8...100}\)
\(=\frac{1.2.3.4...100}{1.2.2.2.3.2...50.2}\)
\(=\frac{51.52.53...100}{2}\)
Vậy \(A=B\)
xử lí C ta có C=51.52.53.....100/250
ta nhân cả tử và mẫu của C với 1.2.3.........50 thì dc
(1.2.3.4.5.6.........................50).(51.52..............100)
(1.2.3.4...............................50) (2.2...................2) có 50 thừa số 2
tử giữ nguyên xét mẫu ta có (1.2........50).(2.2.......2.2)= (1.2)(2.2)......(50.2)=2.4.6.8......100 vậy triệt tiêu tử cho mẫu thì ta dc c=1.3....97.99
tức C=D
-->C=\(\frac{1.2.3.4...99.100}{2.4.6....100}\)-->C=\(\frac{1.2.3...99.100}{\left(2.2....2\right)\left(1.2.3.4.5....50\right)}\)[50 chữ số 2]
-->\(C=\frac{51}{2}.\left(\frac{52}{2}\right)....\left(\frac{100}{2}\right)\)=D vậy C=D
________________________________________________________
LI-KE CHO MK NHÉ BN
\(A=1.3.5.7...99=\frac{\left(1.3.5.7...99\right)\left(2.4.6...100\right)}{2.4.6...100}=\frac{1.2.3...100}{\left(2.1\right)\left(2.2\right)...\left(2.50\right)}=\frac{\left(1.2.3...50\right)\left(51.52.53....100\right)}{\left(1.2.3...50\right)\left(2.2.2...2\right)}=\frac{51.52.53...100}{2.2...2}=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=B\)