
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<1 ( Vì 172009+1< 172010+1 )
Nên B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<\(\frac{17^{2009}+1+16}{17^{2010}+1+16}\)
=\(\frac{17^{2009}+17}{17^{2010}+17}\)
=\(\frac{17\left(17^{2008}+1\right)}{17\left(17^{2009}+1\right)}\)
=\(\frac{17^{2008+1}}{17^{2009}+1}\)=A
Vậy A>B

a)\(x.3^{15}=3^{17}\)
\(x=3^{17}:3^{15}\)
\(x=3^2=9\)
b) \(5^x=6^x\Leftrightarrow x=1;x=0\)
c) \(x^3=x^6\)
\(x^3=x^3.x^3\) \(x^3=1\) \(x=1\) | \(x^3=\left(x^3\right)^2\) \(x=0\) |
B2 ss
a)\(3^{45}=\left(3^3\right)^{15}=27^{15}\)
\(4^{30}=\left(4^2\right)^{15}=16^{15}\)
vì 1615 < 2715 nên 430 < 345
b)
\(818.820=\left(819-1\right)\left(819+1\right)=819^2-1\)
vì 8192 > 8192 - 1 nên 8192 > 818.820

\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).

â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!
a) Ta có:
\(0,3\left(2\right)=0,3222...=0,32+0,00222...\)
Mà: \(0,32+0,00222...>0,32\)
\(\Rightarrow0,3\left(2\right)>0,32\)
b) Ta có:
\(\dfrac{5}{6}=0,8\left(3\right)=0,8333...=0,8+0,0333...\)
\(0,834=0,8+0,034\)
Mà: \(0,0333...< 0,34\)
Nên: \(\dfrac{5}{6}< 0,834\)
a: 0,3(2)=0,3222...>0,32
b: 5/6=0,8(3)=0,83333...<0,834