K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

\(99^{20}=\left(99^2\right)^{10}=9810^{10}\)

\(9810^{10}< 9999 ^{10}=>99^{20}< 9999^{10}\)

Vậy ...............

21 tháng 9 2017

\(\dfrac{790^4}{79^4}=10000\)

29 tháng 6 2015

a)912 và 268

912=(32)12=324

268<278=(33)8=324

=>268<324

=>912>268

b) 9920 và 999910

9920=(992)10=980110

vì 980110<999910

nên 9920<999910

c) 3222 và 2333

3222=(32)111=9111

2333=(23)111=8111

vì 9>8 nên 911>811

=>3222>2333

TÌM X,Y Biết:

(2x - 5 )2016 + (3y + 4)2014 = 0

=>2x-5=0 và 3y+4=0 hoặc 2x-5=1 và 3y+4=-1 hoặc 2x-5=-1 và 3y+4=1

*2x-5=0 và 3y+4=0

2x=5 và 3y=-4

x=5/2 và y=-4/3

*2x-5=1 và 3y+4=-1

2x=6 và 3y=-5

x=3 và y=-5/3

*2x-5=-1 và 3y+4=1

2x=4 và 3y=-3

x=2 và y=-1

vậy  x=5/2 y=-4/3

hoặc x=3 và y=-5/3

hoặc x=2 và y=-1

19 tháng 11 2015

Ta có :

1) 45^10 . 5^30= (5.9)^10 . 5^30 = 5^10 . 5^30 . 9^10 = 5^40 . 3^20 = 25^20 . 3^20=75^20

2)\(\sqrt{40+2}=\sqrt{42}<\sqrt{49}=7=6+1=\sqrt{36}+\sqrt{1}<\sqrt{40}+\sqrt{2}\)

Vậy \(\sqrt{40+2}<\sqrt{40}+\sqrt{2}\)

3)\(Cho\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k;y=4k\)

Ta lại có:

\(xy=12\Rightarrow3k.4k=12\)

\(12.k^2=12\Rightarrow k^2=1\Rightarrow k=1:-1\)

\(Vơik=1\Rightarrow x=1.3=3;y=1.4=4\)

\(k=-1\Rightarrow x=-1.3=-3;y=-1.4=-4\)

8 tháng 10 2020

a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)

c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)

\(2^{30}=\left(2^3\right)^{10}=8^{10}\)

\(4^{30}=\left(4^3\right)^{10}=64^{10}\)

Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)

\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)

Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)

\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)

1 tháng 10 2017

Chơi luôn câu c):

Ta có: \(9999=99\cdot101\Rightarrow9999^{10}=101^{10}\cdot99^{10}\)

Trong khi đó \(99^{20}=99^{10}\cdot99^{10}\)mà\(99^{10}< 101^{10}\)

Suy ra \(99^{20}< 9999^{10}\)

1 tháng 10 2017

Giải câu a) trước nè:

a) \(2^{91}>2^{90};5^{36}>5^{35}\)

Ta so sánh 2^90 và 5^36

\(2^{90}=2^{5.18}=\left(2^5\right)^{18}=32^{18}\)

\(5^{36}=5^{2.18}=\left(5^2\right)^{18}=25^{18}\)

Vì 32>25 nên 32^18>25^18 <=> 2^90>5^36

=>2^91>5^35

19 tháng 12 2015

1. 0 giá trị ... Vì giá trị tuyệt đối luôn luôn lớn hơn hoặc bằng không tuy nhiên giá trị cho trước lại không giống nhau nên sẽ không có số nào thỏa mãn .
2. Mình không chắc lắm nhưng mình nghĩ x=0.
3.      => 3x2-51=-24 => x2= ( -24+51 ) :3 =9 => x= +3 và -3
      hoặc 3x2-51=24 => x2= ( 24+51 ) :3 =25 => x=+5 hoặc -5
Vậy có 4 giá trị thỏa mãn.
4.    (1/-2)^40=(1/2)^40=[(1/2)^10]^4=(1/1024)^4
       (1/-10)^12=(1/10)^12=[(1/10)^3]^4=(1/1000)^4
=> B <A
5.    41007.52014= (22)1007.52014 ==22.1007.52014=22004.52014=102004 
=> có 2015 chữ số