Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=3/4+8/9+.............+9999/10000`
`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`
`=99-(1/4+1/9+.........+1/10000)<99-0=99`
`=>A<99`
\(C-D=\dfrac{\left(98^{99}+1\right)\left(98^{88}+1\right)-\left(98^{89}+1\right)\left(98^{98}+1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{98^{187}+98^{99}+98^{88}+1-98^{197}-98^{89}-98^{98}-1}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{98^{99}-98^{98}+98^{88}-98^{89}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{98^{98}\left(98-1\right)-98^{88}\left(98-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{97.98^{98}-97.98^{88}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{97.98^{88}\left(98^{10}-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}>0\)
\(\Rightarrow C>D\)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggdhuhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Sửa đề: \(98+99+\dfrac{142}{144}\) \(\rightarrow\dfrac{98}{99}+\dfrac{143}{144}\)
Giải:
\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+\dfrac{62}{63}+\dfrac{98}{99}+\dfrac{143}{144}+\dfrac{194}{195}\)
\(A=\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{195}\right)\)
\(A=7-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{195}\right)\)
\(A=7-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{13.15}\right)\)
\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{13.15}\right)\right]\)
\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\right]\)
\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{15}\right)\right]\)
\(A=7-\left[\dfrac{1}{2}.\dfrac{14}{15}\right]\)
\(A=7-\dfrac{7}{15}\)
\(A=\dfrac{98}{15}\)
Chúc bạn học tốt!
Ta có :
( 984 )3 = 984*3 = 9812
Vì 98 = 98
mà 12 < 15
Nên 9812 < 9815
Hay ( 984 )3 < 9815
Vậy (984)3 < 9815