Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7A=7+7^2+....+7^{101}\)
\(7A-A=\left(7-7\right)+\left(7^2-7^2\right)+......+\left(7^{100}-7^{100}\right)+7^{101}-1\)
\(A=\frac{7^{101}-1}{6}\)
Vậy Biểu thức A = B = \(\frac{7^{101}-1}{6}\)
1/
\(10A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 1< 10B$
$\Rightarrow A< B$
2/
\(C=\frac{10^{99}+5}{10^{99}-8}=1+\frac{13}{10^{99}-8}\)
\(D=\frac{10^{100}+6}{10^{100}-4}=1+\frac{10}{10^{100}-4}\)
So sánh \(\frac{13}{10^{99}-8}=\frac{130}{10^{100}-80}> \frac{130}{10^{100}-4}> \frac{10}{100^{100}-4}\)
$\Rightarrow 1+\frac{13}{10^{99}-8}> 1+\frac{10}{100^{10}-4}$
$\Rightarrow C> D$
10055 - 10054 = 10054.(100 - 1) = 10054.99
10054 - 10053 = 10053.(100 - 1) = 10053.99
mà 10054.99 > 10053.99 nên 10055 - 10054 > 10054 - 10053
vì A và B đều có 1 nên ta bỏ 1 đi
Ta có : 100^100-100^99=9000......00000( tổng cộng có 198 số 0)
\(\frac{1}{100^{98}}=\frac{100}{100^{99}}\)nên \(\frac{1}{100^{99}}-\frac{1}{100^{98}}=\frac{-99}{100^{99}}\)
nhưng 900....000( 198 số 0) lớn hơn \(\frac{-99}{100^{99}}\)
=>A>B