Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)
\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)
c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)
\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)
\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)
\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)
\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)
\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)
\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)
\(\sqrt{9.\left(x-1\right)^2}-12=0\)
=> 3.(x - 1) - 12 = 0
=> 3x - 15 = 0
=> 3x = 15
=> x = 5
b) \(\sqrt{4.\left(3-x\right)}=16\) (ĐKXĐ: x ≤ 3)
\(\Rightarrow\sqrt{3-x}=8\)
=> 3 - x = 64
=> x = -61
a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)
\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)
\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)
\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)
\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)
\(=-8\sqrt{3}\)
b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)
\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)
a: \(13\sqrt{11}=\sqrt{13^2\cdot11}=\sqrt{1859}\)
b: \(-8\sqrt{2}=-\sqrt{64\cdot2}=-\sqrt{128}\)
c: \(a\sqrt{5a}=\sqrt{a^2\cdot5a}=\sqrt{5a^3}\)
d: \(b\sqrt{\dfrac{5}{ab}}=-\sqrt{b^2\cdot\dfrac{5}{ab}}=-\sqrt{\dfrac{5b}{a}}\)
Ta đặt \(f\left(n\right)=\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\) (\(n\) dấu căn)
Xét phương trình \(x^2-x-4=0\), pt này có nghiệm \(t=\dfrac{1+\sqrt{17}}{2}< 3\). Ta sẽ chứng minh \(f\left(n\right)< t,\forall n\inℕ^∗\)
Dễ thấy \(f\left(1\right)< t\). Giả sử \(f\left(n\right)< t\). Khi đó:
\(f\left(n+1\right)=\sqrt{4+f\left(n\right)}< \sqrt{4+t}\).
Mà \(4+t=t^2\) (do \(t\) là nghiệm của pt \(x^2-x-4=0\)) nên suy ra \(f\left(n+1\right)< \sqrt{4+t}=\sqrt{t^2}=t\).
Vậy \(f\left(n+1\right)< t\). Theo nguyên lí quy nạp \(\Rightarrow f\left(n\right)< t,\forall n\inℕ^∗\)
Mà \(t< 3\) \(\Rightarrow f\left(n\right)< 3\), \(\forall n\inℕ^∗\).
Vậy \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}< 3\)
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)
b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)
\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)
c: \(-\sqrt{75a^2b^3}\)
\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)
b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)
a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)
\(1^2=1\)
mà \(37-12\sqrt{10}< 0\)
nên \(2\sqrt{5}-3\sqrt{2}< 1\)
viết rõ đề dc ko bạn ơi 2 vế so sánh vế nào với vế nào ạ?
\(\frac{4}{5}\sqrt{3}+\frac{9}{13}\sqrt{2}=\frac{52\sqrt{3}+45\sqrt{2}}{65}=2,364711574\) \(< 2,4\)
vậy \(\frac{4}{5}\sqrt{3}+\frac{9}{13}\sqrt{2}< 2,4\)