Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\sqrt{8}\). 4 = \(\sqrt{\frac{128}{16}}\).4 > \(\sqrt{\frac{81}{16}}\).4 = 9/4 . 4 =9 = 3.3
<=> \(\frac{\sqrt{8}}{3}\)> 3/4
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005
được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)
\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
a)\(\left(\sqrt{2019.2021}\right)^2=2019.2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2\)
=> \(\sqrt{2019.2021}< 2020\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>5+2\sqrt{4}=5+2.2=9\)
=> \(\sqrt{2}+\sqrt{3}>3\)
c) \(9+4\sqrt{5}=4+4\sqrt{5}+5=\left(2+\sqrt{5}\right)^2>\left(2+\sqrt{4}\right)^2=\left(2+2\right)^2=16\)
=> \(9+4\sqrt{5}>16\)
d) \(\sqrt{11}-\sqrt{3}>\sqrt{9}-\sqrt{1}=3-1=2\)
=> \(\sqrt{11}-\sqrt{3}>2\)
Ta có:\(4\sqrt{5}-\sqrt{26}=\sqrt{16}.\sqrt{5}-\sqrt{26}\)
\(=\sqrt{80}-\sqrt{26}\)
\(< \sqrt{81}-\sqrt{26}< \sqrt{81}-\sqrt{25}\)
\(=9-5=4\)
Vậy \(4>4\sqrt{5}-\sqrt{26}\)