Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
321 = 3.320 = 3.910
231 = 2.230 = 2.810
Vì 3.910 > 2.810 nên 321 > 231
Ta có:231=(23)10.2=810.2
321=(32)10.3=910.3
Vì \(\hept{\begin{cases}9^{10}>8^{10}\\3>2\end{cases}}\) nên 910.3>810.2 hay 321>231
1) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
2) \(3^{21}=3^{20}\cdot3=9^{10}\cdot3\)
\(2^{31}=2^{30}\cdot2=8^{10}\cdot2\)
mà \(9^{10}\cdot3>8^{10}\cdot2\)=> tự viết tiếp
3) đợi chút
430 = (43)10 = 6410 > 4810 = ( 2 . 24 )10 = ( 210 ) . ( 2410 ) > 3 . 2410
=> 230 + 330 + 430 > 3 . 2410
.
2^31=2*2^30=2*8^10
3^21=3*3^20=3*9^10
vì 2*8^10<3*9^10
vậy 2^31<3^21
a) \(3^{21}\)và \(2^{31}\)
\(3^{21}\)=\(3.3^{20}\)=\(3.9^{10}\)
\(2^{31}=2.2^{30}=2.8^{10}\)
Vì \(3.9^{10}\)>\(2.8^{10}\)\(\Rightarrow3^{21}>2^{31}\)
b)\(2^{300}\)và \(3^{200}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
c)\(32^9\)và\(18^{13}\)
\(32^9=2^{5.9}=2^{45}\)
\(18^{13}>16^{13}=2^{4.13}=2^{52}\)
\(\Rightarrow2^{45}< 2^{52}< 18^{13}\)\(\Rightarrow2^{45}< 18^{13}\Rightarrow32^9< 18^{13}\)
a) ta có: 321 = 3.320 = 3.910
231 = 2.230 = 2.810
vì 2.810 < 3.910 => 231 < 321
b) ta có: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
vì 8100 < 9100 => 2300 < 3200
c) ta có: 329 = (25)9 = 245
1813 > 1613 = (24)13 = 252
ta thấy 245 < 252 < 1813
Nên 329 < 1813
a) Thì rất dễ
Mình làm
c) Ta có ; 2112 = (213)4 = 92614
Mà : 92614 > 544
Nên : 2112 > 544
321=3.320=3.910
231=2.230=2.810
Vì 3>2;9>8 => 3.910>2.810
Hay 321>231
321=3.320=3.910
231=2.230=2.810
Vì 3.910>2.810 nên 321>231
Mít cứ bình phương lên là ok
(2\(\sqrt{7}\))2 =28 (1)
(3\(\sqrt{3}\))2 =27 (2)
vậy (1) > (2)
cứ thế mà làm là hết mít
Vì 2 < 3 và 22 < 32 => 222 < 332
3111<3211. Mà 3211=(25)11=255.
=>3111<255.
1714>1614. Mà 1614=(24)14=256.
Mà 255<256=>3111<255<256<1714=>3111<1714.
222 và 322
Vì 2 < 3; 22 < 32 nên 222 < 332
3111 và 1714
3111 = 319 . 312
1714 = 179 . 175
Mà 179 < 319 , 175 > 312 nên 3111 < 1714
a) \(63^7\)và \(16^{12}\)
Có \(63^7< 64^7=\left(2^6\right)^7=2^{42}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\)=) \(63^7< 16^{12}\)
b) \(17^{14}\)và \(31^{11}\)
Có \(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
Vì \(2^{56}>2^{55}\Rightarrow17^{14}>16^{14}>32^{11}>31^{11}\)
=) \(17^{14}>31^{11}\)
c) \(2^{67}\)và \(5^{21}\)
Có \(5^{21}< 8^{21}=\left(2^3\right)^{21}=2^{63}\)
Vì \(2^{67}>2^{63}\Rightarrow2^{67}>8^{21}>5^{21}\)
=) \(2^{67}>5^{21}\)
\(3^{21};2^{31}\)
2^31= (2^3)^10 x 2= 8^10 x 2
3^21= (3^2)^10 x 3= 9^10 x 3
=> 3^21>2^31
anh em trả lời được ăn bioziem miễn phí hihi