K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

\(9^{30}\)và  \(27^{20}\)

Ta có : 

\(9^{30}=\left(9^3\right)^{10}=729^{10}\)

\(27^{20}=\left(27^2\right)^{10}=729^{10}\)

Vì \(729^{10}=729^{10}\)nên \(9^{30}=27^{20}\)

12 tháng 7 2017

9^30 = (3^2)^30 = 3^60

27^20 = (3^3)20 = 3^60

=> 9^30 = 27^20

13 tháng 9 2020

Xét \(A=2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(2^2\right)^{30}=8^{10}+27^{10}+2^{60}\)

\(B=3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(2^3\right)^{20}=9^{10}+36^{10}+2^{60}\)

Vì \(8^{10}< 9^{10},27^{10}< 36^{10}\)nên A<B

230 = 23.10= 810

330=33.10=2710

430=43.10=6410

Vế trái = 810 + 2710 + 6410

320=32.10=910

620=62.10=3610

820=82.10=6410

vế phải = 910 + 3610 + 6410

Vì 6410=6410 ; 3610 > 2710 ; 910 > 810

=> vế phải > vế trái

1 tháng 8 2023

Bài 4:

\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)

1 tháng 8 2023

Bài 5:

100< 52x-3 < 59

Đề vầy hả em?

 

29 tháng 7 2018

\(^{9^{30}=3^{2^{30}}=3^{60}}\) mặt khác  2720

2720\(=3^{3^{20}}\)=360

vậy 930=2720

29 tháng 7 2018

210<510

mà 510<5140 

vậy 210<5140

2 tháng 12 2015

a. \(9^{30}=\left(3^2\right)^{30}=3^{60}\)(1)

\(27^{20}=\left(3^3\right)^{20}=3^{60}\)(2)

Từ (1) và (2) => 930=2720.

b. \(2^{110}=\left(2^{11}\right)^{10}\)

\(5^{140}=\left(5^{14}\right)^{10}\)

-> Vì cùng số mũ nên xét 211 và 514.

Ta có: 2 < 5 và 11 < 14

=> 211 < 514

=> (211)10 < (514)10

Vậy 2110 < 5140.

2 tháng 12 2015

nhấn vào đúng 0 sẽ có câu tl

5 tháng 11 2021

\(3^{100}>3^{90}=\left(3^3\right)^{30}=27^{30}\)

2 tháng 8 2015

ta có \(2^{30}=\left(2^3\right)^{10}=8^{10}\)

        \(3^{30}=\left(3^3\right)^{10}=27^{10}\)

        \(4^{30}=\left(4^3\right)^{10}=64^{10}\)

   ta có       \(3^{20}=\left(3^2\right)^{10}=9^{10}\)

                  \(6^{20}=\left(6^2\right)^{10}=36^{10}\)

                   \(8^{20}=\left(8^2\right)^{10}=64^{10}\)

              \(\Rightarrow2^{30}+3^{30}+4^{30}=8^{10}+27^{10}+64^{10}\)

            \(\Rightarrow3^{20}+6^{20}+8^{20}=9^{10}+36^{10}+64^{10}\)

       Xét        \(8^{10}

24 tháng 9

So sánh 2^20+3^30+4^30 và3.24^10

24 tháng 6 2021

`a)2^{300}=(2^3)^100=8^100`

`3^200=(3^2)^100=9^100`

Vì `9^100>8^100`

`=>2^300<3^200`

`b)3xx24^10`

`=3.(3.8)^10`

`=3^{11}.8^10`

`=3^{11}.2^30`

`2^300=2^{30}.2^{270}`

`=2^{30}.8^{90}`

Vì `3^11<8^90`

`=>3^{11}.2^30<8^{90}.2^30=2^300`

`=>3xx24^{10}<2^300+3^20+4^30`

AH
Akai Haruma
Giáo viên
18 tháng 7 2023

Lời giải:

a.

$32^{47}=(2^5)^{47}=2^{5.47}=2^{235}$

$64^{33}=(2^6)^{33}=2^{6.33}=2^{198}$

Vì $2^{235}> 2^{198}$ nên $32^{47}> 64^{33}$

b.

$(\frac{1}{2})^{30}=\frac{1}{2^{30}}=\frac{1}{8^{10}}$

$(\frac{1}{3})^{20}=\frac{1}{3^{20}}=\frac{1}{9^{10}}$

Hiển nhiên $8^{10}< 9^{10}\Rightarrow \frac{1}{8^{10}}> \frac{1}{9^{10}}$

$\Rightarrow (\frac{1}{2})^{30}> (\frac{1}{3})^{20}$