Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề \(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{99.101}=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)=\frac{3}{2}\left(1-\frac{1}{101}\right)=\frac{3}{2}-\frac{3}{202}< \frac{3}{2}\)
Bài 1 :
Ta có :
\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)
Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)
Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)
Vậy \(A>B\)
Bài 2 :
Ta có :
\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)
\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)
\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)
\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)
Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)
Nên : \(M>4\)
Vậy \(M>4\)
Bài 3 :
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)
Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)
\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)
\(\Rightarrow A< \frac{3}{4}\)
Vậy \(A< \frac{3}{4}\)
Bài 4 :
\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow A=\frac{1008}{2017}\)
Vậy \(A=\frac{1008}{2017}\)
\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)
\(1-\frac{1}{x+2}=\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)
\(\Rightarrow x+2=2017\)
\(\Rightarrow x=2017-2=2015\)
Vậy \(x=2015\)
Ta có: 3 .(2+5) = 3.7 = 21
3.2+ 3.5 = 6 + 15 = 21
Vậy 3.(2+5) = 3.2 +3.5
3.(2 + 5) = 3.7 = 21
3.2 + 3.5 = 6 + 15 = 21
⇒ 3.(2 + 5) = 3.2 + 3.5
-2/3 và 3/4=8/12 và 9/12 8/12<9/12 hay 2/3<3/4
-7/10 và 3/4=28/40 và 30/40 28/40<30/40 hay 7/10<3/4
-7/8 và 9/10=70/80 và 72/80 70/80<72/80 hay 7/8<9/10
hok tốt nha
a, \(\frac{2}{3}\)và \(\frac{3}{4}\) MSC: 12
Ta có:
\(\frac{2}{3}=\frac{2.4}{3.4}=\frac{8}{12}\)
\(\frac{3}{4}=\frac{3.3}{4.3}=\frac{9}{12}\)
Vì \(\frac{8}{12}< \frac{9}{12}\Rightarrow\frac{2}{3}< \frac{3}{4}\)
b, \(\frac{7}{10}\)và \(\frac{3}{4}\) MSC: 20
Ta có:
\(\frac{7}{10}=\frac{7.2}{10.2}=\frac{14}{20}\)
\(\frac{3}{4}=\frac{3.5}{4.5}=\frac{15}{20}\)
Vì \(\frac{14}{20}< \frac{15}{20}\Rightarrow\frac{7}{10}< \frac{3}{4}\)
c, \(\frac{7}{8}\)và \(\frac{9}{10}\) MSC: 40
Ta có:
\(\frac{7}{8}=\frac{7.5}{8.5}=\frac{35}{40}\)
\(\frac{9}{10}=\frac{9.4}{10.4}=\frac{36}{40}\)
Vì \(\frac{35}{40}< \frac{36}{40}\Rightarrow\frac{7}{8}< \frac{9}{10}\)
P.s: Dấu "." là dấu nhân nhé em
23x53=(2x5)3=103
104>103 suy ra 104>23x53