\(2^{301}\) và \(3^{201}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

Ta có: 2301=23.100+1

               =(23)100.2

               =8100.2

Ta có: 3201=32.100+1

                     =(32)100.3

               =9100.3

Ta có: 8100<9100 ( do 8<9)

     2<3

=>8100.2<9100.3

Vậy 2301<3201

22 tháng 10 2019

Trả lời :

3^ 501 và 7^ 301

3^ 501= ( 3.5 )^ 101

             =     15^ 101

7 ^ 301 = ( 7.3 ) ^ 101

              =       21  ^ 101V 

Vì  15 ^ 101 < 21 ^ 101 

Nên 3 ^ 501 < 7 ^ 301

      - Study well -

7 tháng 5 2018

mik làm câu A thôi nha

ta có :

1 - 2009/2010 = 1/2010

1 - 2010/2011 = 1/2011

Phần bù nào bé thì phân số đó lớn .

Vì 1/2010 > 1/2011

Nên 2009/2010 > 2010/2011

7 tháng 5 2018

Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 ) 
Để so sánh hai phân số, ta so sánh các hiệu. 

\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)

Ta có :

\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)

\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)

Ta thấy :

\(\frac{1}{2010}>\frac{1}{2011}\)

Hay :

\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)

Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)

26 tháng 7 2016

\(\frac{ }{ }\frac{ }{ }\)

17 tháng 3 2020

Bạn làm đúng rồi đó .

Nếu đây là câu trl thì bạn phải trl vào câu hỏi chứ 

25 tháng 10 2016

A = 5 + 52 + 53 + 54 + ... + 5200

5A = 52 + 53 + 54 + 55 + ... + 5201

5A - A = (52 + 53 + 54 + 55 + ... + 5201) - (5 + 52 + 53 + 54 + ... + 5200)

4A = 5201 - 5 < 5201

=> A < 5201

25 tháng 10 2016

tối mik giải cho nhé, giờ bận

 

2009/2010=1-1/2010<1-1/2011=2010/2011

vậy 2009/2010<2010/2011

3^400=(3^4)^100=81^100>64^100=4^300

=>1/3^400<1/4^300

Vậy 1/3^400<1/4^300

 

31 tháng 5 2017

a,

\(-\frac{13}{38}=-1--\frac{25}{38}=-1+\frac{25}{38}\)

\(\frac{29}{-88}=-\frac{29}{88}=-1--\frac{59}{88}=-1+\frac{59}{88}\)

Vì \(\frac{25}{38}< \frac{59}{88}\Rightarrow-\frac{13}{38}< \frac{29}{-88}\)

b,

Ta có:

3301 > 3300 = [33]100 = 27100

5199 < 5200 = [52]100 = 25100

Mà 27100 > 25100 => 3301 > 5199

c,

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left[2n+1\right]\left[2n+3\right]}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)

\(=1-\frac{1}{2n+3}< 1\)

Vậy P < 1

31 tháng 5 2017

\(5^{199}=\left(5^{\frac{199}{301}}\right)^{301}\)

\(5^{\frac{199}{301}}< 3^1\)

\(\Leftrightarrow5^{199}< 3^{301}\)

26 tháng 4 2016

200+201 hay 200+202

26 tháng 10 2016

A>5201

Vì khi tính một vài số của A thì đã lớn hơn 5201

26 tháng 10 2016

Ta có:

\(A=5+5^2+5^3+5^4+...+5^{200}\)

\(5A=5.\left(5+5^2+5^3+...+5^{200}\right)\)

\(5A=5^2+5^3+5^4+...+5^{201}\)

\(5A-A=\left(5^2+5^3+5^4+...+5^{200}+5^{201}\right)-\left(5+5^2+5^3+5^4+...+5^{200}\right)\)

\(4A=5^2+5^3+5^4+...+5^{200}+5^{201}-5-5^2-5^3-5^4-...-5^{200}\)

\(4A=\left(5^2-5^2\right)+\left(5^3-5^3\right)+\left(5^4-5^4\right)+...+\left(5^{200}-5^{200}\right)+5^{201}-5\)

\(4A=0+0+0+...+0+5^{201}-5\)

\(4A=5^{201}-5\)

\(A=\frac{5^{201}-5}{4}\)

\(5^{201}-5< 5^{201}\)

\(\Rightarrow\frac{5^{201}-5}{4}< \frac{5^{201}}{4}< 5^{201}\)

hay \(A< 5^{201}\)

Vậy \(A< 5^{201}\)