Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{301}=\left(2^3\right)^{100}.2=8^{100}.2\)
\(3^{201}=\left(3^2\right)^{100}.3=9^{100}.3\)
Dễ thấy \(8^{100}< 9^{100}\)
\(2< 3\)
\(\Rightarrow8^{100}.2< 9^{100}.3\)
\(2^{301}< 3^{201}\)
Ta có: \(A=1+3^1+3^2+3^3+...+3^{199}+3^{200}\)
\(\Rightarrow3A=3^1+3^2+3^3+3^4+...+3^{201}\)
\(\Rightarrow3A-A=\left(3^1+3^2+3^3+3^4+...+3^{201}\right)-\left(1+3^1+3^2+3^3+...+3^{200}\right)\)
\(\Rightarrow2A=3^{201}-1\)
\(\Rightarrow A=\frac{3^{201}-1}{2}< 3^{201}-1< 3^{201}=B\)
Vậy A < B
Ta có: 2301 = 2300 . 2 = ( 23) 100 . 2 = 8100 . 2
3201 = 3200 . 3 = (32) 100 . 3 = 9100 . 3
Do 8 < 9 => 8100 < 9100 ; 2 < 3 nên:
=> 8100 . 2 < 9100 . 3
=> 2301 < 3201
Chúc bn hk tốt
Ta có : \((0,5)^{201}>(0,5)^{200}=(0,5)^{2\cdot100}=(0,5^2)^{100}=(0,25)^{100}\)
Ta thấy : \((0,25)^{100}< (0,3)^{100}\)
\(\Rightarrow(0,3)^{100}>(0,5)^{201}\)
Chúc bạn học tốt :>
a) 5^299 < 5^300 = (5^2)^150 = 25^150
3^501 = (3^3)^167 = 27^167
=> 27^167 > 25^150 => 3^501 > 5^299
Còn phần b) ko bít làm
Lời giải:
$2^{299}< 2^{300}=(2^3)^{100}=8^{100}$
$3^{201}> 3^{200}=(3^2)^{100}=9^{100}$
$\Rightarrow 3^{201}> 9^{100}> 8^{100}> 2^{299}$