Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
\(1\text{)}\hept{\begin{cases}5^{30}=\left(5^3\right)^{10}=125^{10}\\3^{50}=\left(3^5\right)^{10}=243^{10}\end{cases}}\Rightarrow5^{30}< 3^{50}\)
\(2\text{)}\hept{\begin{cases}27^3=\left(3^3\right)^3=3^9\\9^5=\left(3^2\right)^5=3^{10}\end{cases}}\Rightarrow27^3< 9^5\)
\(3\text{)}14^{40}>14^{20}\)
\(4\text{)}\hept{\begin{cases}2< 12\\15< 16\end{cases}}\Rightarrow2^{15}< 12^{16}\)
a/ 40^20=40^2.10=1600^10
3^30=3^3.10=27^10
vì 1600^10>27^10 nên 40^20>3^30
a) 40^20=(4^2)^10=16^10
30^30=(3^3)^10=27610
Vì 16<27=>16^10<27^10 hay 4^20<3^30
b) mk chịu
c) Đặt A= 1/3+1/3^2+1/3^3+...+1/3^99
=>3A=3( 1/3+1/3^2+1/3^3+...+1/3^99)
=>3A=1+1/3+1/3^2+...+1/3^98
=>3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1-1/3^99
=>A=(1-1/3^99)/2
=>A=1/2 - (1/3^99)/2 < 1/2=>a<1/2
\(A=\frac{2017^{99}}{2017^{100}-2}\)
=> \(2017A=\frac{2017^{100}}{2017^{100}-2}=\frac{2017^{100}-2+2}{2017^{100}-2}=1+\frac{2}{2017^{100}-2}\)
\(B=\frac{2017^{100}}{2017^{101}-2}\)
=>\(2017B=\frac{2017^{101}}{2017^{101}-2}=\frac{2017^{101}-2+2}{2017^{101}-2}=1+\frac{2}{2017^{101}-2}\)
Do \(\frac{2}{2017^{100}-2}>\frac{2}{2017^{101}-2}\)
Nên 2017A > 2017B
Vậy A > B
\(2017^{7012}>2017^{6051}=\left(2017^3\right)^{2017}\)
Mà \(2017^3>2017\)
\(\Rightarrow\)\(2017^{2012}>7012^{2017}\)
Vì \(2016^{2017}>2016^{2017}-3\)
\(\Rightarrow B>\frac{2016^{2017}}{2016^{2017}-3}>\frac{2016^{2017}+2}{2016^{2017}-3+2}=\frac{2016^{2017}+2}{2016^{2017}-1}=A\)
vậy \(A< B\)
Ta có : 22017=2*22016=2*(22)1008=2*41008. Vì 41008>31008=>2*41008>31008hay 22017>31008