Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu so sánh giảm dần thì :
9,0,1
nếu so sánh tăng dần thì :
0,1,9
Ta có :
\(8^9< 9^9\)
\(7^9< 9^9\)
\(6^9< 9^9\)
\(......\)
\(1^9< 9^9\)
Cộng vế với vế ta được :
\(1^9+2^9+3^9+...+8^9< 9^9+9^9+9^9+...+9^9\) ( có tất cả 8 chữ số \(9^9\) )
\(\Rightarrow1^9+2^9+3^9+...+8^9< 8.9^9< 9.9^9=9^{10}\)
\(\Rightarrow1^9+2^9+3^9+...+8^9< 9^{10}\)
Giúp vsssssssssssssssssssssssssssssssssssssssss nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa .........................
\(A=\frac{\left(2018+1\right).2018}{2}=2037171\)
\(B=1.2+2.3+3.4+...+2018.2019\)
\(3B=1.2.3+2.3.3+3.4.3+...+2018.2019.3\)
\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2018.2019.\left(2020-2017\right)\)
\(3B=1.2.3+2.3.4-1.2.3+...+2018.2019.2020-2017.2018.2019\)
\(3B=2018.2019.2020\)
\(B=\frac{2018.2019.2020}{3}\)
\(B=2743390280\)
Chúc bạn học tốt ~
\(A=2^0+2^1+2^3+.....+2^{2016}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow A=2A-A=2^{2017}-1\)
\(\Rightarrow A=B\)
\(A=2^0+2^1+2^2+...+2^{2010}=1+2+2^2+...+2^{2010}\)
\(A=1+2\left(2^0+2^1+2^2+...+2^{2019}\right)=1+2\left(A-2^{2010}\right)=1+2A-2^{2011}\)
\(A=2^{2011}-1=B\)
Ta có : \(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(3A=2+2^2+2^3+2^4+...+2^{2011}\)
=> \(2A=3A-A=\left(2^1+2^2+...+2^{2011}\right)-\left(2^0+2^1+...+2^{2010}\right)\)
=>\(2A=2^{2011}-1\)
=>\(A=\frac{2^{2011}-1}{2}\)
=> A < B ( vì \(\frac{2^{2011}-1}{2}< 2^{2011}\) )
2^1^0^9=2
2^1^0^8=2
vậy 2^1^0^9=2^1^0^8
nhớ chúng minh nha các bạn