Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2024\cdot2025+1005\)
\(=2024\cdot405\cdot5+5\cdot201\)
\(=5\cdot\left(2024\cdot405+201\right)\)
Mà: \(5\cdot\left(2024\cdot405+201\right)\) ⋮ 5
\(\Rightarrow2024\cdot2025+1005\) ⋮ 5
Xem 2024.2025 là số hạng thứ nhất và 1005 là số hạng thứ 2.
Vì 2025 ⋮ 5 nên 2024.2025 chắc chắn chia hết cho 5, 1005 ⋮ 5
Vì 2 số hạng của tổng đó đều chia hết cho 5 nên tổng đó cx chia hết cho5
Vậy tổng 2024.2025 ⋮ 5
=5(1-1/2+1/2-1/3+...+1/2023-1/2024)
=5*2023/2024
=10115/2024
Yêu cầu đề là gì vậy bạn? Bạn nên ghi rõ ràng, đầy đủ để mọi người hỗ trợ tốt hơn/
Ta có :
\(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}\)
Vậy \(\frac{10^{19}+1}{10^{20}+1}>\frac{10^{20}+1}{10^{21}+1}\)
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
Ta có:2023.2024<2024.2025
=> 1/2023.2024>1/2024.2025
=>-1/2023.2024<-1/2024.2025
=> 2023.2024-1/2023.2024<2024.2025-1/2024.2025
Học tốt