K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

So sánh \(A=\dfrac{2016}{2017}+\dfrac{2017}{2018}\)\(B=\dfrac{2016+2017}{2017+2018}\)

Có 2 cách:

C1 :Rảnh thì bấm máy tính luôn rồi so sánh (nhưng cách này tỉ lệ sai khá cao nếu bất cẩn ghi nhầm số):

\(A=\dfrac{2016}{2017}+\dfrac{2017}{2018}\) \(=1,999008674\approx2\)

\(B=\dfrac{2016+2017}{2017+2018}\) \(=0,9995043371\approx1\)

Do 2 > 1 nên :

\(\Rightarrow A>B\).

C2:

Ta có:

\(\dfrac{2016}{2017}>\dfrac{2016}{2018}\Rightarrow A>\dfrac{2016}{2018}+\dfrac{2017}{2018}\Rightarrow A>\dfrac{2016+2017}{2017}\)

\(B=\dfrac{2016+2017}{2017+2018}=\dfrac{2016+2017}{4035}\)

\(\dfrac{2016+2017}{2018}>\dfrac{2016+2017}{4035}\)

\(\Rightarrow A>B\).

_ Học tốt :))_

30 tháng 4 2016

=(2014/2014)+(2015+2015)+(2016/2016)+(2017+2017)

=1+1+1+1

=4

vậy A=4 (4=4)

17 tháng 5 2018

Có \(\frac{2016}{2017}=1-\frac{1}{2017}\Rightarrow\frac{2016}{2017}+\frac{1}{2017}=1\)1

\(\frac{2017}{2018}=1-\frac{1}{2018}\)

mà 1 = 1 và 2017 < 2018 nên \(\frac{1}{2017}>\frac{1}{2018}\)

suy ra \(\frac{2016}{2017}< \frac{2017}{2018}\)mặc khác \(\frac{2016}{2017}>\frac{1}{2017}\)nên\(\frac{2017}{2018}>\frac{1}{2017}\)do đó \(\frac{2016}{2017}+\frac{2017}{2018}>1\)

13 tháng 2 2018

Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)

        \(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

Ta có hai tổng A và B mới để so sánh:

\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

 Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V

31 tháng 7 2017

3 lon hon a