K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Vì 20160142016014/20170152017015 rút gọn cả tử và mẫu cho 10000001 thì dược kết quả là 2016014/2017015

Suy ra 20160142016014/20170152017015=2016014/2017015

26 tháng 3 2020

a) 3200=(32)100=9100 ; 2300=(23)100=8100

=> 9100>8100 hay 3200>2300

b) 7150=(712)25=504125 ; 3775=(373)25=5065325

=> 504125<5065325 hay 7150<3775

c)rút gọn

2016014/2017015=2014/2015

2016016014/2017017015=2014/2015

=> 2014/2015 = 2014/2015

23 tháng 3 2020

a) A>B 

b) 

24 tháng 3 2020

Đầu tiên mình dùng: dấu chấm"." thay dấu nhân "x" nha cho nó thuận tiện do mình học lớp 8

a) ta đi so sánh \(3^{21}\)và \(2^{31}\)

ta có: \(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{10}\)

          \(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{10}\)

Vì \(8^{10}< 9^{10}\) và \(2< 3\) nên \(2^{31}=2.8^{10}< 3.9^{10}=3^{21}\)(đpcm)

a: 43/52>26/52=1/2=60/120

b: 17/68=1/4<1/3=35/105<35/103

c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)

\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)

2018*2019<2019*2020

=>-1/2018*2019<-1/2019*2020

=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)

10 tháng 5 2023

\(\dfrac{19}{19}\) = 1 < \(\dfrac{2005}{2004}\) vậy \(\dfrac{19}{19}\) < \(\dfrac{2005}{2004}\)

\(\dfrac{72}{73}\) = 1 - \(\dfrac{1}{73}\) 

\(\dfrac{98}{99}\) = 1 - \(\dfrac{1}{99}\)

Vì \(\dfrac{1}{73}\) > \(\dfrac{1}{99}\) nên \(\dfrac{72}{73}\) < \(\dfrac{98}{99}\) 

11 tháng 5 2023

1) 19/19 < 2005/2004

2)72/73 > 98/99

a) ta có:  \(1-\frac{2012}{2013}=\frac{1}{2013}\)

                 \(1-\frac{2013}{2014}=\frac{1}{2014}\)

mà \(\frac{1}{2013}>\frac{1}{2014}\) nên   \(\frac{2013}{2014}>\frac{2012}{2013}\)

3 tháng 4 2022

sao giống lớp 4 thế ta

6 tháng 8 2016

2225 = (23)75 = 875

3151 > 3150 = (32)75 = 975

=> 3151 > 975 > 875

=> 3151 > 2225

6 tháng 8 2016

4n - 5 chia hết cho 2n - 1

=> 4n - 2 - 3 chia hết cho 2n - 1

=> 2.(2n - 1) - 3 chia hết cho 2n - 1

Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1

Mà n thuộc N => 2n - 1 > hoặc = -1

=> 2n - 1 thuộc {-1 ; 1 ; 3}

=> 2n thuộc {0 ; 2 ; 4}

=> n thuộc {0 ; 1 ; 2}