\(2015^{a^{a^9}}\)và \(2014^{9^{9^a}}\)với a=1234567...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

123456789 , ta co:

2014^9^9^123456789 & 2015^123456789^123456789^9

ta thay 2014 <2015   \  9<1...9   \9< 1...9

nen 2014^9^9^a < 2015^a^a^9

vi may minh mat vietkey nen khong dang dau thong cam

30 tháng 3 2019

\(A=\frac{2014^{2015}+2}{2014^{2016}+9}\)

\(2014A=\frac{2014\left(2014^{2015}+2\right)}{2014^{2016}+9}=\frac{2014^{2016}+4028}{2014^{2016}+9}=\frac{\left(2014^{2016}+9\right)+4019}{2014^{2016}+9}=\frac{2014^{2016}+9}{2014^{2016}+9}+\frac{4019}{2014^{2016}+9}=1+\frac{4019}{2014^{2016}+9}\)

\(B=\frac{2014^{2016}+2}{2014^{2017}+9}\)

\(2014B=\frac{2014\left(2014^{2016}+2\right)}{2014^{2017}+9}=\frac{2014^{2017}+4028}{2014^{2017}+9}=\frac{2014^{2017}+9+4019}{2014^{2017}+9}=\frac{2014^{2017}+9}{2014^{2017}+9}+\frac{4019}{2014^{2017}+9}=1+\frac{4019}{2014^{2017}+9}\)

Ta thấy:

\(2014^{2016}+9< 2014^{2017}+9\)

\(\Rightarrow\frac{4019}{2014^{2016}+9}>\frac{4019}{2014^{2017}+9}\)

\(\Rightarrow1+\frac{4019}{2014^{2016}+9}>1+\frac{4019}{2014^{2017}+9}\)

\(\Rightarrow A>B\)

Vậy ....

19 tháng 2 2019

dit me may

20 tháng 2 2019

Người lái xe trước khi đi thấy chỉ còn 3/5 thùng xăng, sợ không đủ nên người đó mua thêm 14 lít xăng nữa. Khi về tới nhà anh thấy chỉ còn 1/3 thùng xăng và tính ra xe tiêu thụ hết 30 lít xăng trong chuyến đi đó. Hỏi thùng xăng chứa bao nhiêu lít xăng?

2 tháng 5 2019

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}+\frac{1}{1}=2\)

\(\Rightarrow\)\(A< 2\left(đpcm\right)\)

chúc bạn học tốt!!!

2 tháng 5 2019

Bài 6 :

 2S = 6 + 3 + 3/2 + ... + 3/2^8

 2S = 6 - 3/2^9 + S

   S = 6 - 3/2^9

  Vậy S = 6 - 3/2^9

Bài 7 :

  Ta có : 

    A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2

  =)  A < 2

   Vậy A < 2

Bài 8 :

  Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )

 =) A < B

   Vậy A < B

Bài 9:

  Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)

  =)  A > B

   Vậy A > B

9 tháng 6 2016

??????????????????????????????????????????????????????????????????????????????????????

9 tháng 6 2016

1/ Do A > 1 ; B < 1 nên A > B

2/ Áp dụng a/b > 1 <=> a/b < a+m/b+m ( a,b,m thuộc N*)

Do A > 1 nên A < 20158 + 3 + 1 / 20158 - 2 + 1 = 20158 + 4 / 20158 - 1 = B

=> A < B

20 tháng 4 2017

quy dong ca A va B ta dc :

\(A=\frac{-109}{10^{2014}}\)

\(B=\frac{-199}{10^{2014}}\)

\(\Rightarrow A>B\)

30 tháng 3 2018

dễ thôi

ta có :A=-9/10^2013+-19/10^2014=-9/10^2013+-9/10^2014+-10/10^2014

          B=-9/10^2014+-19/10^2013=-9/10^2014+-9/10^2013+-10/10^2013

nhìn nhé :cả A và B đều có các số hạng :-9/10^2013 và-9/10^2014

mà -10/10^2014<-10/10^2013

=>A<B

15 tháng 7 2017

a/ \(8^5=\left(2^3\right)^5=2^{15}\)và \(32^3=\left(2^5\right)^3=2^{15}\Rightarrow8^5=32^3\)

b/ \(27^4=\left(3^3\right)^4=3^{12}\) và \(9^6=\left(3^2\right)^6=3^{12}\Rightarrow27^4=9^6\)

c/ \(23^{17}-23^{16}=23^{16}\left(23-1\right)=22.23^{16}\)

\(23^{16}-23^{15}=23^{15}\left(23-1\right)=22.23^{15}\)

\(\Rightarrow22.23^{16}>22.23^{15}\Rightarrow23^{17}-23^{16}>23^{16}-23^{15}\)

d/ \(\frac{3^{2015}+1}{3^{2016}}=\frac{1}{3}+\frac{1}{3^{2016}}\) và \(\frac{3^{2016}+1}{3^{2017}+1}=\frac{3^{2017}+3}{3\left(3^{2017}+1\right)}=\frac{3^{2017}+1+2}{3\left(3^{2017}+1\right)}=\frac{1}{3}+\frac{2}{3}.\frac{1}{3^{2017}+1}\)

\(\frac{1}{3^{2016}}>\frac{1}{3^{2017}}>\frac{1}{3^{2017}+1}>\frac{2}{3}.\frac{1}{3^{2017}+1}\)

\(\Rightarrow\frac{3^{2015}+1}{3^{2016}}>\frac{3^{2016}+1}{3^{2017}+1}\)

Câu cuối phân tích tương tự