Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2010^{2009}+2009^{2009}\right)^{2010}\)
\(=\left(2010^{2009}+2009^{2009}\right)^{2009}\left(2010^{2009}+2009^{2009}\right)\)
\(>\left(2010^{2009}+2009^{2009}\right)^{2009}.2010^{2009}\)
\(=\left(2010.2010^{2009}+2010.2009^{2009}\right)^{2009}\)
\(>\left(2010.2010^{2009}+2009.2009^{2009}\right)^{2009}\)
\(=\left(2010^{2010}+2009^{2010}\right)^{2009}=B\)
Vậy \(A>B\)
Dạo này anh ít on lắm em có nhờ thì em kiếm kênh khác nhờ không thì phải đợi a on a mới làm được nhé
\(2009^{2010}+2009^{2009}=2009^{2009}.2009+2009^{2009}=2009^{2009}.\left(2009+1\right)=2009.2010\)\(2010^{2010}=2010.2010^{2009}\)
Dễ thấy \(2009^{2009}.2010<2010.2010^{2009}\)
Nên \(2009^{2010}+2009^{2009}<2010^{2010}\)
20092010+20092009
=20092009.2009+20092009
=20092009(2009+1)
=20092009.2010
Mà 20102010=20102009.2010
nên 20092010+20092009 < 20102010
Xong rồi đó bạn
Do 20092010-2<20092011-2=>B<1
Theo đề bài ta có:
\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}\)\(=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)
\(=\frac{2009^{2009}+1}{2009^{2010}+1}\)\(=A\)=>B<A
Lời giải:
$2009A=\frac{2009^{2010}+2009}{2009^{2010}+1}=1+\frac{2008}{2009^{2010}+1}>1$
$2009B=\frac{2009^{2011}-4018}{2009^{2011}-2}=1-\frac{4016}{2009^{2011}-2}<1$
$\Rightarrow 2009A> 1> 2009B$
$\Rightarrow A> B$
\(2009^{2010}+2009^{2009}=2009^{2009}.\left(2009+1\right)=2009^{2009}.2010\)
\(2010^{2010}=2010^{2009}.2010\)
Vì \(2009^{2009}<2010^{2009}\text{ và }2010=2010\)
=> \(2009^{2009}.2010<2010^{2009}.2010\)
Vậy \(2009^{2010}+2009^{2009}<2010^{2010}\).