K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}=\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)

Vì \(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\) nên \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)

\(\Rightarrow\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)>\sqrt{2009}+\sqrt{2008}\)

Hay \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}>\sqrt{2008}+\sqrt{2009}\)

21 tháng 7 2017

Cảm ơn bạn CTV 

6 tháng 6 2016

 Không rõ bạn muốn so sánh tổng đã cho với cái gì ? Còn nếu như bạn Bibo Bobi so sánh các số hạng của tổng mà cho rằng theo thứ tự nhỏ dần thì không đúng đâu.Chẳng hạn ta thử so sánh 2008/2009 và 2009/2010. 
Nếu cả 2 phân số này cùng nhân với tích (2009*2010) thì lần lượt được 2008*2010 và 2009^2. 
Mà 2008*2010=(2009-1)*(2009+1)= 2009^2-1. 
Rõ ràng số trước nhỏ hơn số sau,vậy 2008/2009<2009/2010 tức là theo thứ tự lớn dần.

6 tháng 6 2016

Ta có: 4=1+1+1+1 = \(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}\)\(=\frac{2008}{2009}+\frac{1}{2009}+\frac{2009}{2010}+\frac{1}{2010}+\frac{2010}{2011}+\frac{1}{2011}+\frac{2008}{2008}\)

Xét A=\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)

\(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}\)

Xét \(\frac{1}{2009}< \frac{1}{2008};\frac{1}{2010}< \frac{1}{2008};\frac{1}{2011}< \frac{1}{2008}\)

=> 4< A

10 tháng 7 2015

ta có Đặt \(A=\frac{2008^{2008}+1}{2008^{2009}+1}\)

\(B=\frac{2008^{2007}+1}{2008^{2008}+1}\)

Xét A trước ta có

\(2008A=\frac{2008\left(2008^{2008}+1\right)}{2008^{2009}+1}\)\(2008A=\frac{2008^{2009}+2008}{2008^{2009}+1}\)

\(2008A=\frac{2008^{2009}+1+2007}{2008^{2009}+1}\)suy ra \(2008A=1+\frac{2007}{2008^{2009}+1}\)

Xét B ta có 

\(2008B=\frac{2008.\left(2008^{2007}+1\right)}{2008^{2008}+1}\)suy ra \(2008B=\frac{2008^{2008}+2008}{2008^{2008}+1}\)

\(2008B=\frac{2008^{2008}+1+2007}{2008^{2008}+1}\)suy ra \(2008B=1+\frac{2007}{2008^{2008}+1}\)

VÌ \(1+\frac{2007}{2008^{2009}+1}

10 tháng 7 2015

Đặt \(a=2008^{2007};\)

\(A=\frac{2008^{2008}+1}{2008^{2009}+1}=\frac{2008a+1}{2008^2.a+1};\text{ }B=\frac{2008^{2007}+1}{2008^{2008}+1}=\frac{a+1}{2008a+1}\)

Quy đồng mẫu ta có:

\(A=\frac{\left(2008a+1\right)\left(2008a+1\right)}{\left(2008^2a+1\right)\left(2008a+1\right)}=\frac{2008^2a^2+2.2008a+1}{\left(2008^2a+1\right)\left(2008a+1\right)}\)

\(B=\frac{\left(a+1\right)\left(2008^2a+1\right)}{\left(2008a+1\right)\left(2008^2a+1\right)}=\frac{2008^2a^2+\left(2008^2+1\right)a+1}{\left(2008a+1\right)\left(2008^2a+1\right)}\)

So sánh ở tử ta thấy \(2.2008

27 tháng 9 2015

Bài này hơi dài nên bạn bấn vào đây để xem lời giải Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

1 tháng 9 2016

A= \(\frac{9+7a}{a^{2009}}\)

B= \(\frac{8+8a}{a^{2009}}\)

So sánh tử số : A :9+7a = 8+8a-(a-1)

                            B :8+8a

Vậy  A<B

14 tháng 11 2019

Ta có : \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)

                \(=\frac{2007-1}{2007}+\frac{2008-1}{2008}+\frac{2009-1}{2009}+\frac{2006+3}{2006}\)

                  \(=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)

                  \(=\left(1+1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}-\frac{3}{2006}\right)\)

                  \(< 4-\left(\frac{1}{2009}+\frac{1}{2009}+\frac{1}{2009}-\frac{3}{2009}\right)\)     

                    \(=4\)

=> A < 4 

Vậy A < 4