Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2001+2002}{2002+2003}< \dfrac{2001}{2002}+\dfrac{2002}{2003}\)
A=2001/2002+2002/2003
B=2001/2002+2003+2002/2002+2003
(tớ tách B ra đấy)
mà 2001//2002+2002/2003>2001/2002+2003+ 202/2002+2003
A>B
a)7777/8888 lớn hơn bạn
b)2002/2003 lớn hơn bạn
K TUI NHÉ :)
a, ta có :
\(\hept{\begin{cases}\frac{5555}{6666}=\frac{5555\div1111}{6666\div1111}=\frac{5}{6}=\frac{5\cdot8}{6\cdot8}=\frac{40}{48}\\\frac{7777}{8888}=\frac{7777\div1111}{8888\div1111}=\frac{7}{8}=\frac{7\cdot6}{8\cdot6}=\frac{42}{48}\end{cases}}\) mà 40 < 42
\(\Rightarrow\frac{5555}{6666}< \frac{7777}{8888}\)
ta có \(\frac{2000+2002}{2001+2003}\)= \(\frac{2000}{2001+2003}\)+ \(\frac{2002}{2001+2003}\)=\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
ta có \(\frac{2000}{2001}\)>\(\frac{2000}{4004}\) và \(\frac{2002}{2003}\)> \(\frac{2002}{4004}\)
nên \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
vậy \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000+2002}{2001+2003}\)
\(\frac{2000+2002}{2001+2003}=\frac{2000}{2001+2003}+\frac{2002}{2001+2003}< \frac{2000}{2001}+\frac{2002}{2003}\)
B = \(\frac{2001}{2002}+\frac{2002}{2003}\)
có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B
Ta có: 10 *(10^2001+1)/10^2002+1 = 10^2002+10/10^2002+1 = (10^2002+1)+9/10^2002+1 = 1+9/10^2002+1
10*(10^2002+1)/10^2003+1 = 10^2003+10/10^2003+1 = (10^2003+1)+9/10^2003+1 = 1+9/10^2003+1
Vì 9/10^2002+1>9/10^2003+1 nên 1+9/10^2002+1>1+9/10^2003+1
Vậy: 10^2001+1/10^2002+1>10^2002+1/10^2003+1
Bài làm:
Ta có: \(\frac{2001}{2002}< \frac{2002}{2003}\)
\(\Leftrightarrow-\frac{2001}{2002}>-\frac{2002}{2003}\)
Ko bt đúng hay sai mà mk làm đại
\(Vì\)\(\frac{2002}{2001}< 3\\ \)
\(\frac{2003}{2002}< 3\)
\(\frac{2001}{2003}< 3\)
\(\Rightarrow\frac{2002}{2001}+\frac{2003}{2002}+\frac{2001}{2002}< 3\)