K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

A=5000

B=5900

k mình nha

22 tháng 3 2017

bạn có thể viết cách làm ko

A=2(1+3+5+...+97+99)

Số số lẻ trong khoảng từ 1 đến 99 là (99-1):2+1=50(số)

=>Tổng của các số lẻ từ 1 đến 99 là (99+1)*50/2=50*50=2500

=>A=2*2500=5000

B=2(2+4+6+...+98+100)

Số số chẵn trong khoảng từ 2 đến 100 là

(100-2):2+1=50(số)

=>Tổng của các số lẻ từ 2 đến 100 là (100+2)*50/2=50*51=2550

=>B=2*2550=5100

=>A<B

10 tháng 10 2023

a) \(3\cdot24^{10}=3\cdot6^{10}\cdot4^{10}=3\cdot3^{10}\cdot2^{10}\cdot2^{20}\)

\(=3^{11}\cdot2^{30}\)

\(4^{30}=2^{30}\cdot2^{30}=2^{30}\cdot4^{15}\)

Ta có \(4^{15}>3^{15}>3^{11}\) nên \(4^{15}>3^{11}\)

Khi đó \(4^{15}\cdot2^{30}>3^{11}\cdot2^{30}\) hay \(4^{30}>3\cdot24^{10}\)

b) \(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{19}{9^2\cdot10^2}\)

\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+...+\dfrac{19}{81\cdot100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)

Vậy dãy trên nhỏ hơn 1

10 tháng 10 2023

a/

\(4^{30}=\left(2^2\right)^{30}=2^{60}=2^{30}.2^{30}=\left(2^2\right)^{15}.2^{30}=4^{15}.2^{30}\)

\(3.24^{10}=3.3^{10}.\left(2^3\right)^{10}=3^{11}.2^{30}< 3^{15}.2^{30}\)

\(\Rightarrow4^{30}=4^{15}.2^{30}>3^{15}.2^{30}>3^{11}.2^{30}=3.24^{10}\)

b/

\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}=\)

\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}=\)

\(=1-\dfrac{1}{10^2}< 1\)

 

20 tháng 1 2022

M=\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{17}{8^2.9^2}+\dfrac{19}{9^2.10^2}\)

=\(\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{17}{64.81}+\dfrac{19}{81.100}\)

=\(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{81}+\dfrac{1}{81}-\dfrac{1}{100}\)

=1-\(\dfrac{1}{100}\)=\(\dfrac{99}{100}\)<\(\dfrac{100}{100}=1\)

20 tháng 1 2022

.

8 tháng 8 2016

Ta có

\(M=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^3.3^2}+.....+\frac{100^2-99^2}{99^2.100^2}\)

\(M=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+......+\frac{1}{99^2}-\frac{1}{100^2}\)

\(M=1-\frac{1}{100^2}< 1\)

=> M<1

7 tháng 3 2020

Bằng  612

7 tháng 3 2020

12.22.32-\(\frac{2015}{1.2.3}\)+12.22.32.42-\(\frac{2015}{1.2.3.4}\)

=36 +576  - (\(\frac{2015}{1.2.3}\)+\(\frac{2015}{1.2.3.4}\))

= 612-\(\frac{10075}{24}\)

=\(\frac{4613}{24}\)

14 tháng 8 2016

\(S=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{99}{49^2\cdot50^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{49^2}-\frac{1}{50^2}\)

\(=1-\frac{1}{50^2}=\frac{2499}{2500}\)

\(T=\frac{1}{\left(2-1\right)\left(2+1\right)}+\frac{1}{\left(3-1\right)\left(3+1\right)}+...+\frac{1}{\left(50-1\right)\left(50+1\right)}\)

\(=\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\)

\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}\cdot\left(1+\frac{1}{2}-\frac{1}{51}\right)=\frac{151}{204}\)

Vì \(\frac{2499}{2500}>\frac{151}{204}\)nên S>T

14 tháng 8 2016

JOKER_Võ Văn Quốc, T = \(\frac{1}{2}.\left(1-\frac{1}{51}+\frac{1}{2}-\frac{1}{50}\right)\)mới đúng
Sẽ dễ hơn nếu bạn chia ra 2 vế \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)và \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{48+50}\)

19 tháng 4 2017

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}\)

\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)

\(1-\frac{1}{100}=\frac{99}{100}\)

19 tháng 4 2017

2/1×3  + 2/3×5  +2/5×7 +... +2/99×101

/ Là phần