Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(B=\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
vì: \(\frac{2015}{2016}>\frac{2015}{2016+2017}\)VÀ \(\frac{2016}{2017}>\frac{2016}{2016+2017}\)
\(\Rightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
\(\Rightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)
\(\Rightarrow A>B\)
Vậy: \(A>B\)
Ta có :\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}\)= \(\frac{2016}{2016}=1\)
mà : 1 < 3
vậy:\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}< 3\)
Giải: Ta có:
\(\frac{2016}{2017}=\frac{2017}{2017}-\frac{1}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=\frac{2018}{2018}-\frac{1}{2018}=1-\frac{1}{2018}\)
\(\frac{2018}{2016}=\frac{2016}{2016}+\frac{2}{2016}=1+\frac{2}{2016}\)
\(\Rightarrow3+\frac{-1}{2017}+\frac{-1}{2018}+\frac{2}{2016}=3+\frac{2}{2016}>3\)
Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))
\(\Leftrightarrow x=1\)
Vạy x=1
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
bang nhau
\(\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
\(\frac{2015}{2016}>\frac{2015}{2016+2017}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017}\)
\(A>B;\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)