Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trước hết ta chứng minh \(a^2-1=\left(a-1\right)\left(a+1\right)\text{tự chứng minh }\)
Áp dụng bổ đề trên ta có:
\(-A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right) =\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot...\cdot\dfrac{100^2-1}{100^2}=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}=\dfrac{1\cdot2\cdot3^2\cdot...\cdot99^2\cdot100\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\dfrac{1\cdot101}{2\cdot100}>\dfrac{1}{2}\\ \Rightarrow A< -\dfrac{1}{2}\)
2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016
Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016
=> 2A=1/1.2-1/2015.2016
=> 2A < 1/2 => A < 1/4
Trả lời:
\(P=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2021^2}-1\right)\)
\(=\frac{1-2^2}{2^2}\cdot\frac{1-3^2}{3^2}\cdot\frac{1-4^2}{4^2}\cdot...\cdot\frac{1-2021^2}{2021^2}\)
\(=\frac{-3}{2^2}\cdot\frac{-8}{3^2}\cdot\frac{-15}{4^2}\cdot...\cdot\frac{-4084440}{2021^2}\)
\(=\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{4084440}{2021^2}\) ( vì tích trên có 2020 thừa số, mà tích của 2020 thừa số âm là số dương )
\(=\frac{3\cdot8\cdot15\cdot...\cdot4084440}{2^2\cdot3^2\cdot4^2\cdot...\cdot2021^2}\)
\(=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot2020\cdot2022}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot2021\cdot2021}\)
\(=\frac{\left(1\cdot2\cdot3\cdot...\cdot2020\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot2022\right)}{\left(2\cdot3\cdot4\cdot...\cdot2021\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot2021\right)}\)
\(=\frac{1\cdot2022}{2021\cdot2}=\frac{1011}{2021}>\frac{1011}{2022}=\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{80}{81}\cdot\frac{99}{100}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot...\cdot\frac{8.10}{9.9}\cdot\frac{9.11}{10.10}\)
\(B=\frac{\left(1\cdot2\cdot...\cdot8\cdot9\right).\left(3\cdot4\cdot...\cdot10\cdot11\right)}{\left(2\cdot3\cdot..\cdot9\cdot10\right).\left(2\cdot3\cdot...\cdot9\cdot10\right)}\)
\(B=\frac{1\cdot2\cdot...\cdot8\cdot9}{2\cdot3\cdot...\cdot9\cdot10}\cdot\frac{3\cdot4\cdot...\cdot10\cdot11}{2\cdot3\cdot...\cdot9\cdot10}\)
\(B=\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
Vì 20 < 21 nên 11/20 > 11/21
Vậy .....
bạn vào link này nè:https://olm.vn/hoi-dap/question/980572.html
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
ai lm đc thì chat vào đây hộ mik nha!!