K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

ta có :

\(10A=\frac{10^{2014}+10}{10^{2014}+1}=\frac{\left(10^{2014}+1\right)+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

\(10B=\frac{10^{2015}+10}{10^{2015}+1}=\frac{\left(10^{2015}+1\right)+9}{10^{2015}+1}=1+\frac{9}{10^{2015}+1}\)

ta thấy \(10^{2014}+1< 10^{2015}+1\Rightarrow\frac{9}{10^{2014}+1}>\frac{9}{10^{2015}+1}\Rightarrow10A>10B\Rightarrow A>B\)

21 tháng 5 2015

\(A=\frac{98^{2015}+1}{98^{2014}+1}>1\)

Ta có:

\(A=\frac{98^{2015}+1+97}{98^{2014}+1+97}=\frac{98^{2015}+98}{98^{2014}+98}=\frac{98\left(98^{2014}+1\right)}{98\left(98^{2013}+1\right)}\)

\(=\frac{98\left(98^{2015}+1\right)}{98\left(98^{2014}+1\right)}=\frac{98^{2014}+1}{98^{2013}+1}\)

Ta thấy: \(\frac{98^{2014}+1}{98^{2013}+1}=B\)mà \(A>1\)

\(\Rightarrow A>B\)

13 tháng 3 2017

\(A=\frac{98^{2015}+1}{98^{2014}+1}>1\)

Theo đề ta có:

\(A=\frac{98^{2015}+1+97}{98^{2014}+1+97}=\frac{98^{2015}+98}{98^{2014}+98}=\frac{98\left(98^{2014}+1\right)}{98\left(98^{2013}+1\right)}\) 

   \(=\frac{98\left(98^{2015}+1\right)}{98\left(98^{2014}+1\right)}=\frac{98^{2014}+1}{98^{2013}+1}\)

Lúc này ta thấy: \(\frac{98^{2014}+1}{98^{2013}+1}=B\)mà  \(A>1\)

\(\Leftrightarrow A>B\).

12 tháng 12 2018

ta có: 20142015 + 20142014 = 20142014.(2014+1) = 20142014.2015

20152015 = 20152014.2015

mà 20142014 < 20152014

=> ...

12 tháng 12 2018

20142015 + 20142014 = 20142014 x(2014 +1)= 20142014 x 2015.

20152015 = 20152014 x 2015.

Vì 20142014 < 20152014  nên 20142015 + 20142014 < 20152015 

27 tháng 11 2015

20142015 + 20142014 = 20142014.2014 + 20142014.1

= 20142014.(2014 + 1) = 20142014.2015

Ta có: 20152015 = 20152014.2015 

Dễ thấy 20152014.2015 > 20142014.2015

Vậy 20142015 + 20142014 < 20152015

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

5 tháng 7 2017

Ta có \(A=2015^{2001}=2015.2015^{2000}\)

\(B=2014^{2000}+2014^{2001}=2014^{2000}.\left(1+2014\right)\)\(=2015.2014^{2000}\)

Ta thấy \(2014^{2000}< 2015^{2000}\Rightarrow2015.2014^{2000}< 2015.2015^{2000}\)

\(\Rightarrow2015^{2001}>2014^{2000}+2014^{2001}\)

Vậy A>B