K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

Đều có dạng số lẻ.

Bài làm

Các số nguyên tố có đặc điểm là toàn là số lẻ và duy nhất một số nhỏ nhất là số chẵn " 2 " . 

=> Số nguyên tố lớn hơn 5 có dang là số nguyên dương và là số lẻ.

# Chúc bạn học tốt #

1 tháng 3 2018

a, số nguyên tố > 2 nên số đó ko chia hết cho 2

=> số đó lẻ

=> số đó có dạng 4n+-1

b, số nguyên tố > 3 nên số nguyên tố đó lẻ và ko chia hết co 3

=> số đó ko thể có dạng 6k ; 6k+-2 ; 6k+3

=> số đó có dạng 6k+-1

Tk mk nha

1 tháng 3 2018

Tui chơi bang bang trao đổi acc không

NV
5 tháng 1 2022

Do số đã cho là số lẻ nên ko chia hết cho 2

Do số đã cho có tận cùng khác 0, 5 nên ko chia hết cho 5

Gọi p là 1 số nguyên tố nào đó, với \(p\ne\left\{2;5\right\}\) \(\Rightarrow2^x.5^y\)  nguyên tố cùng nhau p

\(\Rightarrow10^z\) nguyên tố cùng nhau với p với mọi z nguyên dương

Ta xét dãy gồm p+1 số có dạng:

1; 11; 111; ...; 111...11 (p+1 chữ số 1)

Theo nguyên lý Dirichlet, trong p+1 số trên có ít nhất 2 số có cùng số dư khi chia hết cho p

Giả sử đó là 111..11 (m chữ số 1) và 111...11 (n chữ số 1), với \(m< n\le p\)

\(\Rightarrow111...11\left(n\text{ chữ số 1}\right)-111...11\left(m\text{ chữ số 1}\right)\) chia hết cho p

\(\Rightarrow111...11000...00\left(a\text{ chữ số 1}\text{ và b chữ số 0}\right)\) chia hết cho p (với a<m)

\(\Rightarrow111...11.10^b\) chia hết cho p

Mà \(10^p\) nguyê tố cùng nhau với p

\(\Rightarrow111...11\left(a\text{ chữ số 1}\right)\) chia hết cho p

Vậy với mọi số nguyên tố p khác 2 và 5, luôn luôn tìm được ít nhất 1 số có dạng 111...11 chia hết cho p

\(\Rightarrow\) Mọi số nguyên tố, trừ 2 và 5, đều có thể là ước của số có dạng 111...11

5 tháng 1 2022

Em cảm ơn thầy nhiều ạ!!

24 tháng 11 2017

Vì p nguyên tố > 3 nên p ko chia hết cho 2 ; 3

=> p ko thể có dạng 6k ( chia hết cho 2 ) ; 6k+2 ( chia hết cho 2 ) ; 6k+3 ( chia hết cho 3 ) ; 6k+4 ( chia hết cho 2 )

=> p có dạng 6k+1 hoặc 6k+5

k mk nha

17 tháng 11 2017

Giải : a) Mỗi số tự nhiên khi chia cho 6 có một trong các số dư 0 , 1 , 2 , 3 , 4 , 5 . Do đó mọi số tự nhiên đều viết được dưới một trong các dạng 6n - 2 , 6n - 1 , 6n , 6n + 1 , 6n + 2 , 6n + 3 . Vì m là số nguyên tố lớn hơn 3 nên m không chia hết cho 2 , không chia hết cho 3 , do đó m không có dạng 6n - 2 , 6n , 6n + 2 , 6n + 3 . Vậy m viết được dưới dạng 6n + 1 hoặc 6n - 1 ( VD : 17 = 6 . 3 - 1 , 19 = 6 . 3 + 1 ).

b) Không phải mọi số có dạng 6n \(\pm\)1 ( n \(\in\)N ) đều là số nguyên tố . Chẳng hạn 6 . 4 + 1 = 25 không là số nguyên tố .

=> ( đpcm ).

8 tháng 8 2016

A vì phải là số tự nhiên >1 và đây ko phải toán lớp 7

8 tháng 8 2016

C nha bn

2 tháng 12 2015

331 ban nhe

tick cho minh di