Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{n+1}=32\)
\(2^{n+1}=2^5\)
\(\Rightarrow n+1=5\)
\(\Rightarrow n=4\)
Ta có:
\(8^{10}\cdot3^{30}=2^{30}\cdot3^{30}=6^{30}=32^{15}>25^{15}\)
chúc bạn hok tốt nha!!
Ta có:
213 + 210 + 2x = y2
=> 8192 + 1024 + 2x = y2
=> 9216 + 2x = y2
=> 962 + 2x = y2
=> 2x = y2 - 962
=> 2x = (y - 96).(y + 96)
=> y - 96 và y + 96 đều là lũy thừa của 2
Do y + 96 > y - 96 nên ta giả sử y + 96 = 2m; y - 96 = 2n (m > n)
=> 2m - 2n = (y + 96) - (y - 96)
=> 2n.(2m-n - 1) = y + 96 - y + 96
=> 2n.(2m-n - 1) = 192
=> 192 chia hết cho 2m-n - 1
Mà 2m-n - 1 chia 2 dư 1
=> 2m-n - 1 = 1 hoặc 2m-n - 1 = 3
+ Với 2m-n - 1 = 1 thì 2n = 192, không tìm được giá trị thỏa mãn
+ Với 2m-n - 1 = 3 thì 2n = 64 = 26
=> 2m-n = 4 = 22; n = 6
=> m - n = 2; n = 6
=> m = 8; n = 6
=> y = 28 - 96 = 160; 2x = (160 - 96).(160 + 96) = 16384 = 214
=> x = 14
Vậy y = 160; x = 14
ms đầu nháp ra nhìn ngắn v mà lm ra coi bộ cx dài phết
A=
\(\dfrac{10^{101}-1}{10^{102}-1}< \dfrac{10^{101}-1+11}{10^{102}-1+11}=\dfrac{10^{101}+10}{10^{102}+10}=\dfrac{10\left(10^{100}+1\right)}{10\left(10^{101}+1\right)}=B\)
Vậy A<B
CHÚC BẠN HỌC TỐT
Ta thấy :
36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7
<=> 36n+1 - k . 33n + 9 ⋮ 7
Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )
Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )
Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )
Ta có :
\(2^2:1^2=4\)
\(4^2:2^2=4\)
.....
\(20^2:10^2=4\)
\(\Rightarrow A=4\cdot1^2+4\cdot2^2+...+4\cdot10^2\)
\(\Rightarrow A=4\cdot\left(1^1+2^2+...+10^2\right)\)
\(\Rightarrow A=4\cdot385\)
\(\Rightarrow A=1432\)
violympic j =0 tick nha
\(-\left(\frac{1}{2}\right)^{10}=\left(\frac{1}{2}\right)^{10}\) (cùng có số mũ chẵn)
=>số nguyên nằm giữa là 0