Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
Đặt A=(n^4-3n^3+n^2-3n+10)/(n^2+1)
=(n^4+n^2-3n^3-3n+1)/(n^2+1)
=[n^2(n^2+1)-3n(n^2+1)+1]/(n^2+1)
=[(n^2+1)(n^2-3n)+1]/(n^2+1)
để A E Z thì tử phải chia hết cho mẫu,mà (n^2+1)(n^2-3n) chia hết cho (n^2+1)
=>1 chia hết cho n^2+1
=>n^2+1 E Ư(1)
mà n^2+1 >= 1 (với mọi n)
=>n^2+1 chỉ có thể = 1
=>n=0
Vậy...............
Ta có (n^4-3n^3+n^2-3n+10)/(n^2+1)
= (n^4+n^2-3n^3-3n+1)/(n^2+1)
= [n^2(n^2+1)-3n(n^2+1)+1]/(n^2+1)
[(n^2+1)(n^2-3n)+1]/(n^2+1)
Để biểu thức nguyên
<=> [(n^2+1)(n^2-3n)+1] chia hết cho n^2+1
mà 1 chia hết cho n^2+1
n^2+1 thuộc Ư(1)
XÉT n^2+1=1
n =0
xát n^2+1 =-1( vô lí)
Vậy n = 0 thì bt nguyên
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
(n^4-3n^3+n^2+3n+7)/(n-3)
=(n^4-3n^3+n^2-3n+6n-18+25)/(n-3)
=(n^3(n-3)+n(n-3)+6(n-3)+25)/(n-3)
=((n-3)(n^3+n+6)+25)/(n-3)
=(n-3)(n^3+n+6)/(n-3)+25/(n-3)
=n^3+n+6+25/(n-3)
khi n nguyên thì n^3+n+6 nguyên nên để n^3+n+6+25/(n-3) nguyên thì 25/(n-3) nguyên
suy ra n-3 thuộc ước của 25
n đạt giá trị lớn nhất khi n-3=25
n=28
(n