Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Biến đổi và đặt log 2 x = t giải bất phương trình ẩn t.
Cách giải: (Điều kiện : x > 0, x ≠ 1)
Đặt log 2 x = t , t ≠ 0 . Bất phương trình (1) trở thành:
Bảng xét dấu:
Mà
Đáp án A
log 2 5 x + 2 + 2 log 5 x + 2 2 > 3 ⇔ log 2 5 x + 2 + 2 log 2 5 x + 2 > 3 *
Đặt: t = log 2 5 x + 2 > 1 ,
Khi đó * ⇔ t + 2 t > 3 ⇔ t > 2
Khi đó:
log 2 5 x + 2 > 2 ⇔ 5 x > 2 ⇔ x > log 5 2 = log a b ⇒ a = 5 b = 2
Ta có:
Ta có
Ta có bảng xét dấu sau:
Từ BBT kết hợp điều kiện của t ta có:
Chọn: D
Đáp án C
Vì x = 1 là một nghiệm của bất phương trình
⇒ log m 4 ≤ log m 2 ⇔ log m 2 ≤ 0 ⇔ m ∈ 0 ; 1 .
Khi đó, bất phương trình
log m 2 x 2 + x + 3 ≤ log m 3 x 2 − x ⇔ 3 x 2 − x > 0 2 x 2 + x + 3 ≥ 3 x 2 − x ⇔ − 1 ≤ x < 0 1 3 < x ≤ 3 .