Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+5=5+2x\)
\(\Leftrightarrow5=5\) (luôn đúng)
Vậy pt đã cho có vô số nghiệm
Phương trình: 4x−3=∣−5x+8∣ có bao nhiêu nghiệm?
A. Vô nghiệm
B. Có 1 nghiệm
C. Có 2 nghiệm
Hok tốt nhoa
Lời giải:
PT $\Leftrightarrow x(m-2)=m^2-4$
a) Để pt nhận $1$ là nghiệm thì $1(m-2)=m^2-4$
$\Leftrightarrow m-2=m^2-4=(m-2)(m+2)$
$\Leftrightarrow (m-2)(m+2-1)=0$
$\Leftrightarrow (m-2)(m+1)=0\Rightarrow m=2$ hoặc $m=-1$
b) Để pt có nghiệm thì:
\(\left[\begin{matrix} m-2\neq 0\\ m-2=m^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\neq 2\\ m=2\end{matrix}\right.\) hay $m\in\mathbb{R}$
Vậy pt có nghiệm với mọi $m\in\mathbb{R}$
c) Kết quả phần b suy ra không tồn tại giá trị của $m$ để pt vô nghiệm.
b) Ta có: \(x^2-4x+6\)
\(=x^2-4x+4+2\)
\(=\left(x-2\right)^2+2\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-2\right)^2+2\ge2>0\forall x\)
hay \(x^2-4x+6>0\forall x\)
Vậy: phương trình \(x^2-4x+6=0\) vô nghiệm
c) Ta có: \(\left|x-2\right|=-1\)
mà \(\left|x-2\right|>0>-1\forall x\)
nên phương trình \(\left|x-2\right|=-1\) vô nghiệm(đpcm)
d) Ta có: \(\left|x\right|=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x\\x=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-x=0\\x+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=0\left(luônđúng\right)\\2x=0\end{matrix}\right.\Leftrightarrow x\in R\)
Vậy: S={x|\(x\in R\)}
TA CÓ : \(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
\(\Leftrightarrow\frac{4a\left(3x-1\right)}{20}-\frac{30x-85}{20}+\frac{6x+4}{20}=0\)
\(\Leftrightarrow\frac{12ax-4a-30x+85+6x+4}{20}=0\)
\(\Leftrightarrow12ax-4a-24x+89=0\)
\(\Leftrightarrow12x\left(a-2\right)+89-4a=0\)
\(\Leftrightarrow x=\frac{4a-89}{12\left(a-2\right)}\)
\(\Rightarrow\)ĐỂ PT VÔ NGHIỆM KHI VÀ CHỈ KHI \(a-2=0\Leftrightarrow a=2\)
vậy
\(3x-5=5+3x=>-5=5\)
==>C, vô nghiệm
\(3x-5=5+3x\)
\(\Leftrightarrow3x-5-5-3x=0\)
\(\Leftrightarrow-10=0\left(VL\right)\)
Chọn C.vô nghiệm