Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{4-6x-x^2}=x+4\left(đk:x\ge-4\right)\)
\(\Leftrightarrow4-6x-x^2=x^2+8x+16\)
\(\Leftrightarrow2x^2+14x+12=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=-6\left(ktm\right)\end{matrix}\right.\)
Lời giải:
ĐKXĐ: $4-6x-x^2\geq 0$
PT \(\Rightarrow \left\{\begin{matrix} x+4\geq 0\\ 4-6x-x^2=(x+4)^2=x^2+8x+16\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ 2x^2+14x+12=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ 2(x+1)(x+6)=0\end{matrix}\right.\)
\(\Rightarrow x=-1\) (thỏa mãn đkxđ)
Vậy pt có 1 nghiệm duy nhất.
Lời giải:
ĐKXĐ: $4-6x-x^2\geq 0$
PT \(\Leftrightarrow \left\{\begin{matrix} x+4\geq 0\\ 4-6x-x^2=(x+4)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ x^2+7x+6=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq -4\\ (x+1)(x+6)=0\end{matrix}\right.\Rightarrow x=-1\)
Thử lại với ĐKXĐ thì thỏa mãn
Nên pt có 1 nghiệm duy nhất.
a) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
Đặt \(t=\sqrt{x-1}\left(ĐK:t\ge0\right)\Leftrightarrow x-1=t^2\Leftrightarrow x=t^2+1\)
pt \(\Leftrightarrow\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=2\Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=2\Leftrightarrow t+1+t-1=2\Leftrightarrow t=1\left(tm\right)\)
Với t=1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Câu b tương tự
a)√x2−9 - 3√x−3 =0
<=> (√x-3)(√x+3)-3√x-3=0
<=> (√x-3)(√x+3-3)=0
<=> (√x-3)√x=0
<=> √x-3=0
<=>x=9
b)√4x2−12x+9=x - 3
<=> √(2x -3)2 =x-3
<=> 2x-3=x-3
<=>2x-x=-3+3
<=>x=0
c)√x2+6x+9=3x-1
<=> √(x+3)2 =3x-1
<=> x+3=3x-1
<=> -2x=-4
<=> x=2
Nhớ cho mình 1 tim nha bạn
Sau em nên gõ các kí hiệu toán học ở phần Σ để mọi người dễ dàng đọc hơn nhé.
Lời giải:
a. Đề thiếu
b. PT $\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-2)^2}=3$
$\Leftrightarrow |x-1|+|x-2|=3$
Nếu $x\geq 2$ thì pt trở thành:
$x-1+x-2=3$
$\Leftrightarrow 2x-3=3$
$\Leftrightarrow x=3$ (tm)
Nếu $1\leq x< 2$ thì:
$x-1+2-x=3\Leftrightarrow 1=3$ (vô lý)
Nếu $x< 1$ thì:
$1-x+2-x=3$
$\Leftrightarrow x=0$ (tm)
ĐK: \(x\ge1\)
Ta có: \(\sqrt{x^2+6x+9}=x-1\)
\(\Leftrightarrow x^2+6x+9=x^2-2x+1\)
\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\left(loại\right)\)
⇒ ptvn
Điền vào dấu 3 chấm là số 0 nhé
\(\sqrt{x^2+6x+9}=x-1\)
<=> \(\sqrt{\left(x+3\right)^2}=x-1\)
<=> \(\left|x+3\right|=x-1\)
<=> \(\left[{}\begin{matrix}x+3=x-1\left(x\ge-3\right)\\x+3=-x+1\left(x< -3\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x-x=-1+3\\x+x=1-3\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}0=2\left(VLí\right)\\2x=-2\end{matrix}\right.\)
<=> 2x = -2
<=> x = -1
Vậy nghiệm của phương trình là \(S=\left\{-1\right\}\)