K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

Điều kiện:  x 2 - 6 x + 6 ≥ 0 ⇔ x ≤ 3 − 3 x ≥ 3 + 3

Đặt: x 2 − 6 x + 6 = t t ≥ 0

Khi đó, phương trình trở thành: ⇔ t 2 + 3 = 4 t ⇔ t 2 - 4 t + 3 = 0 ⇔ t = 1    ( t m ) t = 3    ( t m )

Vậy phương trình có 4  nghiệm.

Đáp án cần chọn là: D

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn D.

16 tháng 5 2021

Đặt \(t=x^2\left(t\ge0\right)\)

pttt:\(t^2-mt+m+3=0\)   (*)

Để pt ban đầu có 4 nghiệm pb <=> pt (*) có hai nghiệm t dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m-12>0\\m>0\\m+3>0\end{matrix}\right.\)\(\Leftrightarrow m>6\)          (1)

Hai nghiệm nhỏ nhất của phương trình ban đầu có dạng \(-\sqrt{t_1},-\sqrt{t_2}\)

Có \(-\sqrt{t_1}-\sqrt{t_2}< -3\)

\(\Leftrightarrow t_1+t_2+2\sqrt{t_1t_2}>9\)

\(\Leftrightarrow m+2\sqrt{m+3}>9\)

\(\Leftrightarrow2\sqrt{m+3}>9-m\)

TH1: \(9-m< 0\Leftrightarrow m>9\)           (2)

TH2: \(\left\{{}\begin{matrix}9-m\ge0\\4\left(m+3\right)>81-18m+m^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le9\\m\in\left(11-2\sqrt{13};11+2\sqrt{13}\right)\end{matrix}\right.\)

\(\Leftrightarrow m\in\left[11-2\sqrt{13};9\right]\backslash\left\{11-2\sqrt{13}\right\}\)             (3)

Từ (1) (2) (3) => m>6 
Ý B

 

 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Bình phương hai vế ta được

\(2{x^2} - 3x - 1 = 2x - 3\)

\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)

b) Bình phương hai vế ta được

\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

c) \(\sqrt {x + 9}  = 2x - 3\)(*)

Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)

Bình phương hai vế của (*) ta được:

\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)

d) \(\sqrt { - {x^2} + 4x - 2}  = 2 - x\)(**)

Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)

Bình phương hai vế của (**) ta được:

\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Ta có: \({x^2} + x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 2\end{array} \right.\)

\( \Rightarrow A = \{ 1; - 2\} \)

Ta có: \(2{x^2} + x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{2}\\x =  - 2\end{array} \right.\)

\( \Rightarrow B = \left\{ {\frac{3}{2}; - 2} \right\}\)

Vậy \(C = A \cap B = \{  - 2\} \).

Phần 1: Đại sốCâu 1 (2đ): Xét dấu các biểu thức sau:a.f x x     3 4; c.    2f x x x x     1 2 5 2 .b. 2f x x x    9 6 1; d.  22 52xf xx x.Câu 2 (4đ): Giải các bất phương trình sau:a.  23 4 4 0 x x   ; c.  21 2 503x xx .b. 22 4 4 0 x x x   ; d. 225 2 302x xx x.Câu 3 (1đ): Xác định miền nghiệm của bất phương...
Đọc tiếp

Phần 1: Đại số
Câu 1 (2đ): Xét dấu các biểu thức sau:
a.
f x x     3 4

; c.

    

2

f x x x x     1 2 5 2 .

b.
 
2
f x x x    9 6 1

; d.

  2
2 5
2
x

f x
x x



.

Câu 2 (4đ): Giải các bất phương trình sau:
a.
  
2
3 4 4 0 x x   

; c.

  
2
1 2 5
0

3
x x
x
 

.

b.
 
2
2 4 4 0 x x x   

; d.

 
2
2
5 2 3
0
2
x x
x x


.

Câu 3 (1đ): Xác định miền nghiệm của bất phương trình sau:

2 3 1 0. x y   

Phần 2: Hình học
Câu 1 (2đ): Cho tam giác ABC biết

A B và C 1; 4 , 3; 1 6; 2 .       
a) Lập phương trình tham số đường thẳng chứa cạnh BC của tam giác.
b) Lập phương trình tổng quát đường cao hạ từ A của tam giác ABC.
c) Lập phương trình tổng quát đường thẳng đi qua B và song song với đường thẳng
d x y : 3 1 0.   
Câu 2 (1đ): Xét vị trí tương đối và tìm giao điểm (nếu có) của 2 đường thẳng sau:
1
d : 2 3 0     x y

2
d : 2 3 0.

0

Câu 1: D

 

4 tháng 12 2021

Bạn ơi câu 2 đâu

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:

Đặt $\sqrt{x+2}=t(t\geq 0)$ thì pt trở thành:

$t^2-2-2t-m-3=0$

$\Leftrightarrow t^2-2t-(m+5)=0(*)$

Để PT ban đầu có 2 nghiệm pb thì PT $(*)$ có 2 nghiệm không âm phân biệt.

Điều này xảy ra khi \(\left\{\begin{matrix} \Delta'=1+m+5>0\\ S=2>0\\ P=-(m+5)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-6\\ m\leq -5\end{matrix}\right.\)

Đáp án B.