K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 11 2021

\(1-2cos^2x-sinx=0\)

\(\Leftrightarrow1-2\left(1-sin^2x\right)-sinx=0\)

\(\Leftrightarrow2sin^2x-sinx-1=0\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\dfrac{\pi}{2};\dfrac{7\pi}{6};\dfrac{11\pi}{6};\dfrac{5\pi}{2}\right\}\)

\(\Rightarrow\sum x=6\pi\)

9 tháng 4 2017

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0


NV
7 tháng 11 2021

\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)

Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho

\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)

\(\Rightarrow1< 2m< \sqrt[]{3}\)

\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)

13 tháng 3 2019

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

3 tháng 4 2017

a) 2cos2x - 3cosx + 1 = 0 (1)

Đặt : t = cosx với điều kiện -1 \(\le t\le1\)

(1)\(\Leftrightarrow\) 2t2 - 3t + 1= 0

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}=cosx\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\left(k\in Z\right)}\)

22 tháng 5 2017

a) Đkxđ: D = R
Đặt \(cosx=t;\left|t\right|\le1\). Phương trình trở thành:m\(2t^2-3t+1=0\Leftrightarrow\left[{}\begin{matrix}t=1\left(tm\right)\\t=\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\).
Với \(t=1\) ta có \(cosx=1\)\(\Leftrightarrow x=k2\pi\).
Với \(t=\dfrac{1}{2}\) ta có \(cosx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\).
Vậy phương trình có 3 họ nghiệm là:
- \(x=k2\pi\);
- \(x=\dfrac{\pi}{3}+k2\pi\);
- \(x=-\dfrac{\pi}{3}+k2\pi\).