\(\frac{\sin3x}{\cos x+1}=0\) thuộc đoạn ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

1/ ĐKXĐ: \(\cos2x\ne0\)

\(\frac{\cos4x}{\cos2x}=\frac{\sin2x}{\cos2x}\)\(\Leftrightarrow\cos4x-\sin2x=0\)

\(\Leftrightarrow2\cos^22x-1-\sin2x=0\)

\(\Leftrightarrow2-2\sin^22x-1-\sin2x=0\)

\(\Leftrightarrow2\sin^22x+\sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\frac{1}{2}=\sin\frac{\pi}{6}\\\sin2x=-1=\sin\frac{-\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\\2x=\frac{-\pi}{2}+2k\pi\left(l\right)\\2x=\frac{3\pi}{2}+2k\pi\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

17 tháng 8 2019

2/ \(\sin2.4x+\cos4x=1+2\sin2x.\cos\left(2x+4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\left(\cos2x.\cos4x-\sin2x.\sin4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\cos2x.\cos4x-2\sin^22x.\sin4x\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+\sin4x.\cos4x-\sin4x+\cos4x.\sin4x\)

Đến đây bn tự giải nốt nhé, lm kiểu bthg thôi bởi vì đã quy về hết sin4x và cos4x r

17 tháng 8 2019
https://i.imgur.com/BisGxxf.jpg
17 tháng 8 2019
https://i.imgur.com/onDIc4W.jpg
NV
14 tháng 9 2020

1.

\(\Leftrightarrow2x-\frac{\pi}{4}=x+\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{7\pi}{12}+k\pi\)

\(-\pi< \frac{7\pi}{12}+k\pi< \pi\Rightarrow-\frac{19}{12}< k< \frac{5}{12}\Rightarrow k=\left\{-1;0\right\}\) có 2 nghiệm

\(x=\left\{-\frac{5\pi}{12};\frac{7\pi}{12}\right\}\)

2.

\(\Leftrightarrow3x-\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)

\(\Rightarrow x=\frac{5\pi}{18}+\frac{k\pi}{3}\)

Nghiệm âm lớn nhất là \(x=-\frac{\pi}{18}\) khi \(k=-1\)

3.

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3\pi}{4}=\frac{\pi}{3}+k2\pi\\x-\frac{3\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13\pi}{12}+k2\pi\\x=\frac{17\pi}{12}+k2\pi\end{matrix}\right.\)

Nghiệm âm lớn nhất \(x=-\frac{7\pi}{12}\) ; nghiệm dương nhỏ nhất \(x=\frac{13\pi}{12}\)

Tổng nghiệm: \(\frac{\pi}{2}\)

29 tháng 8 2019

3) 2sin^2 x - 3sinx + 1 = 0

Đặt t = sin x

(*) <=> 2t^2 - 3t + 1 = 0

<=> t = 1 (nhận) or t = 1/2 (nhận)

.Vs t = 1 => sinx = 1

<=> x = π/2 + k2π (k thuộc Z) (nhận)

.Vs t = 1/2 => sinx = 1/2

<=> sinx = sin π/6

<=> x = π/6 + k2π (k thuộc Z) (nhận)

Vậy ...

2) cos^2 x + cosx = 0

Đặt t = cosx

(*) <=> t^2 + t =0 <=> t = 0 (n) or t = -1 (n)

. Vs t = 0 => cosx = 0 <=> x = π/2 + kπ (loại)

.Vs t = -1 => cosx = -1 <=> x = π + k2π (nhận)

Vậy ...

1) (sin3x)/cosx + 1 = 0

ĐK: cosx + 1 ≠ 0 <=> cosx ≠ -1 <=> x ≠ π + k2π

<=> sin3x = 0

<=> 3x = kπ

<=> x = 1/3 kπ (k thuộc Z) (n)

Vậy ...

27 tháng 9 2020

Câu 1 với câu 2 sai đề, sin và cos nằm trong [-1;1], mà căn 2 với căn 3 lớn hơn 1 rồi

3/ \(\sin x=\cos2x=\sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2x+k2\pi\\x=\pi-\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\frac{2}{3}\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

4/ \(\Leftrightarrow\cos^2x-2\sin x\cos x=0\)

Xét \(\cos x=0\) là nghiệm của pt \(\Rightarrow x=\frac{\pi}{2}+k\pi\)

\(\cos x\ne0\Rightarrow1-2\tan x=0\Leftrightarrow\tan x=\frac{1}{2}\Rightarrow x=...\)

5/ \(\Leftrightarrow\sin\left(2x+1\right)=-\cos\left(3x-1\right)=\cos\left(\pi-3x+1\right)=\sin\left(\frac{\pi}{2}-\pi+3x-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\frac{\pi}{2}-\pi+3x-1\\2x+1=\pi-\frac{\pi}{2}+\pi-3x+1\end{matrix}\right.\Leftrightarrow....\)

6/ \(\Leftrightarrow\cos\left(\pi\left(x-\frac{1}{3}\right)\right)=\frac{1}{2}\Leftrightarrow\pi\left(x-\frac{1}{3}\right)=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{3}=\frac{1}{3}+2k\Rightarrow x=\frac{2}{3}+2k\left(1\right)\\x-\frac{1}{3}=-\frac{1}{3}+2k\Rightarrow x=2k\left(2\right)\end{matrix}\right.\)

\(\left(1\right):-\pi< x< \pi\Rightarrow-\pi< \frac{2}{3}+2k< \pi\) (Ủa đề bài sai hay sao ý nhỉ?)

7/ \(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x+\frac{\pi}{3}\\5x+\frac{\pi}{3}=\pi-\frac{\pi}{2}+2x-\frac{\pi}{3}\end{matrix}\right.\Leftrightarrow...\)

Thui, để đây bao giờ...hết lười thì làm tiếp :(

27 tháng 9 2020

7)

\(sin\left(5x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x-\frac{\pi}{3}+k2\pi\\5x+\frac{\pi}{3}=\pi-\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{42}+k\frac{2\pi}{7}\\x=\frac{\pi}{6}+k\frac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)

Do:\(0< x< \pi\)

\(Với:x=\frac{-\pi}{42}+k\frac{2\pi}{7}\left(k\in Z\right)\Rightarrow khôngtìmđượck\)

\(Với:x=\frac{\pi}{6}+k\frac{2\pi}{3}\left(k\in Z\right)\Leftrightarrow\frac{1}{4}< k< \frac{5}{4}\Rightarrow k=\left\{0;1\right\}\Rightarrow\left[{}\begin{matrix}k=0\Rightarrow x=\frac{\pi}{6}\\k=1\Rightarrow x=\frac{5\pi}{6}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=\frac{\pi}{6};x=\frac{5\pi}{6}\)