Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-\frac{4x}{x^2-5x+6}-\frac{3x}{x^2-7x+6}+6=0\)
\(\Rightarrow\frac{6x^4-79x^3+325x^2-474x+216}{\left(x^2-7x+6\right)\left(x^2-5x+6\right)}=0\)
=>6x4-79x3+325x2-474x+216=0
denta:3x2-23x+18=0
=>(-23)2-4(3.18)=313
\(\Rightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{23\pm\sqrt{313}}{6}\)
=>x=4;\(\frac{3}{2};\frac{\sqrt{313}}{6}+3\frac{5}{6};3\frac{5}{6}-\frac{\sqrt{313}}{6}\)
vậy pt trên có 4 nghiệm
\(\frac{4x}{x^2-5x+6}+\frac{3x}{x^2-7x+6}=6\)
\(\Leftrightarrow\frac{4}{x-5+\frac{6}{x}}+\frac{3}{x-7+\frac{6}{x}}=6\)
Đặt \(x+\frac{6}{x}=a\)
\(\Leftrightarrow\frac{4}{a-5}+\frac{3}{a-7}=6\)
\(\Leftrightarrow\frac{4a-28}{\left(a-5\right)\left(a-7\right)}+\frac{3a-15}{\left(a-5\right)\left(a-7\right)}=6\)
\(\Leftrightarrow4a-28+3a-15=6\left(a^2-12a+35\right)\)
\(\Leftrightarrow6a^2-79a+253=0\)
\(\Delta=79^2-4.253.6=169>0\)
=> Phương trình có 2 nghiệm phân biệt
\(x_1=\frac{79+13}{2.6}=\frac{23}{3}\)( nhận)
\(x_2=\frac{79-13}{12}=5.5\) ( nhận)
Vậy số nghiệm của phương trình là 2 nghiệm
k mình nha!!!!
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
<=> \(m^2-4=0\)
<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
+) Với m = 2 thì phương trình có nghiệm kép là (-1)
+) Với m = -2 thì phương trình có nghiệm kép là (1)
b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)
Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)
Phương trình trên có nghiệm bằng 1
Ta có thể phần tích thành ( x - 1 ) f(x) bằng 0
\(\sqrt{5x^2+6x+5}-4=\frac{64x^3+4x}{5x^2+6x+6}-4\)
Bạn trục căn thức là ra ( x- 1)
đặt \(t=\sqrt{5x^2+6x+5}\). khi đó pt tương đương:
\(t=\frac{64x^3+4x}{t^2+1}\)hay \(t^3+t=64x^3+4x\Leftrightarrow\left(64x^3-t^3\right)+\left(4x-t\right)=0\)
\(\left(4x-t\right)\left(16t^2+4xt+2\right)\)
đến đây tự giải tiếp bạn nhé.
đề chính xác k , s ra nghiệm lẻ quá v