K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2022

Chọn B vì \(\sqrt{2}=1,414213...\)

14 tháng 12 2022

B

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

14 tháng 12 2022

D

14 tháng 12 2022

D

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có: \(3,\left( {45} \right) = \frac{{38}}{{11}}\); \( - 45 = \frac{{ - 45}}{1};\,\,0 = \frac{0}{1}\) do đó:

Các số hữu tỉ là: \(\frac{2}{3};\,3,\left( {45} \right);\, - 45;\,0\).

Các số vô tỉ là: \(\sqrt 2 ;\, - \sqrt 3 ;\,\pi \).

Chú ý:

Số thập phân vô hạn tuần hoàn cũng là số hữu tỉ.

19 tháng 12 2021

1B

2A

GIẢI THÍCH CÂU 2:TÍNH MÁY TÍNH

19 tháng 12 2021

1.B

10 tháng 9 2020

a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ

---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0

\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn

Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)

\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn

Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm

b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ

---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0

\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)

Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)

\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)

\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)

\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm

(Bài dài quá, giải mệt vler !!)

17 tháng 10 2018

Đề thiếu điều kiện n là số tự nhiên nhé 

\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)

\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)

\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)

\(=\)\(\sqrt{n\left(n-1\right)+n}\)

\(=\)\(\sqrt{n\left(n-1+1\right)}\)

\(=\)\(\sqrt{n^2}\)

\(=\)\(\left|n\right|\)

Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)

Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm ) 

Chúc bạn học tốt ~