Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1001\(^2\)=(1000+1)\(^2\)=1000\(^2\)-2.1000+1
=1000000-2000+1
=tự tính
a/Viết đề mà cx sai đc nữa: \(\left(\frac{x+2}{98}+1\right)\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)\left(\frac{x+5}{95}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}.\frac{x+100}{97}-\frac{x+100}{96}.\frac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right)^2\left(\frac{1}{98.97}-\frac{1}{96.95}\right)=0\)
\(\Rightarrow x=-100\)
b/\(\Leftrightarrow\left(\frac{x+1}{1998}+1\right)+\left(\frac{x+2}{1997}+1\right)=\left(\frac{x+3}{1996}+1\right)+\left(\frac{x+4}{1995}+1\right)\)
\(\Leftrightarrow\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}=0\)
\(\Leftrightarrow\left(x+1999\right)\left(...\right)=0\Rightarrow x=-1999\)
b,\(\frac{x+1}{1998}+\frac{x+2}{1997}=\frac{x+3}{1996}+\frac{x+4}{1995}\)
=>\(\frac{x+1}{1998}+1\frac{x+2}{1997}+1=\frac{x+3}{1996}+1+\frac{x+4}{1995}+1\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}=\frac{x+1999}{1996}+\frac{x+1999}{1995}\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}\)=0
\(\Leftrightarrow\)\(\left(x+1999\right)\left(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)\)=0
\(\Leftrightarrow\)x+1999=0(Vì \(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\ne0\))
\(\Leftrightarrow\)x=-1999
Vậy x=-1999
\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}=0\)
\(\Leftrightarrow\frac{x+24}{1996}+1+\frac{x+25}{1995}+1+\frac{x+26}{1994}+1+\frac{x+27}{1993}+1+\frac{x+2036}{4}-4=0\)
\(\Leftrightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)
Mà \(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy . . . . . . . .
a: \(=1995^2-\left(1995^2-1\right)=1995^2-1995^2+1=1\)
b: \(=18^8-18^8+1=1\)
c: \(=\left(163+37\right)^2=200^2=40000\)
\(F=\frac{1996^3-1}{1996^2+1997}=\frac{\left(1996-1\right)\left(1996^2+1996+1\right)}{1996^2+1997}=\frac{1995.\left(1996^2+1997\right)}{1996^2+1997}=1995\)
E = \(\frac{1995^3}{1995^2-1994}=\frac{1995^3+1-1}{1995^2-1994}=\frac{\left(1995+1\right)\left(1995^2-1995+1\right)-1}{1995^2-1994}\)
=\(\frac{1996\left(1995^2-1994\right)-1}{1995^2-1994}=1996-\frac{1}{1995^2-1994}\)
Vì \(1995^2-1994>0\) => \(\frac{1}{1995^2-1994}<1\) => \(-\frac{1}{1995^2-1994}>-1\) => \(1996-\frac{1}{1995^2-1994}>1996-1\)
HAy E > F
chuẩn luôn