Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)
b: \(=\dfrac{6+6\cdot4+6\cdot49}{15+15\cdot4+15\cdot49}=\dfrac{6}{15}=\dfrac{2}{5}\)
c: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{-15}{40}=-\dfrac{3}{8}\)
1)
a)
\(19\cdot64+76\cdot3\\ =\left(19\cdot60+19\cdot4\right)+\left(76\cdot30+76\cdot4\right)\\ =1216+2584=3800\)
b)
\(35\cdot12+65\cdot13\\ =\left(35\cdot10+35\cdot2\right)+\left(65\cdot10+65\cdot3\right)\\ =420+845=1265\)
c)
\(27\cdot27-25\cdot29\\ =\left(27\cdot30-27\cdot3\right)-\left(25\cdot30-25\right)\\ =729-725=4\)
'''''''''''''F'F'S'JURSMJHYT,JTHDNHTDNMYHJFGJHTMJHTMJYT
Cách 1. Ta có: Khi cộng vào mỗi số liệu của một dãy số liệu thống kê cùng một hằng số thì phương sai và độ lệch chuẩn không thay đổi. Do đó độ lệch chuẩn của dãy (2) vẫn là 2 kg.
Cách 2. Tính trực tiếp độ lệch chuẩn của dãy (2).
Đáp án: A.
a: Sô cách chọn là: \(C^6_{40}\left(cách\right)\)
b: Số cách chọn là:
\(C^4_{25}\cdot C^2_{15}+C^5_{25}\cdot C^1_{15}=2125200\left(cách\right)\)
Lời giải:
Đặt $\sqrt{x+2}=t(t\geq 0)$ thì pt trở thành:
$t^2-2-2t-m-3=0$
$\Leftrightarrow t^2-2t-(m+5)=0(*)$
Để PT ban đầu có 2 nghiệm pb thì PT $(*)$ có 2 nghiệm không âm phân biệt.
Điều này xảy ra khi \(\left\{\begin{matrix} \Delta'=1+m+5>0\\ S=2>0\\ P=-(m+5)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-6\\ m\leq -5\end{matrix}\right.\)
Đáp án B.