Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số học sinh giỏi
,khá ,trung bình lần lượt là x, y, z (x,y,z thuộc n*)
theo đề bài ta có:
x/2 , y/3 ,z/5 và (y+z)-x
áp dụng t/c của dãy tỉ số bằng nhau ta có:
x/2, y/3 ,z/5=y+z-x/2+5-3=180/4=45
+>x/2=45 suy ra x=90
+>y/3=45=>y=135
+>z/5=45=>z=225
vậy số h/s giỏi , khá ,tb lần lượt là 90,135,225
Gọi số học sinh giỏi, khá. TB khối 7 là \(a;b;c\left(a;b;c\ne0\right)\)
Vì số học sinh giỏi, khá. TB khối 7 lần lượt tỉ lệ với 2 ; 3 và 5 \(\Leftrightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\left(1\right)\)
Mà tổng số học sinh khá và TB hơn học sinh giỏi 180 em \(\Leftrightarrow b+c-a=180\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\). Từ đó ta suy ra được
\(a=30.2=60\) \(b=30.3=90\) \(c=30.5=150\)
Vậy số học sinh giỏi, khá và trung bình khối 7 lần lượt là 60 ; 90 và 150 em
Gọi số học sinh giỏi, khá, trung bình lần lượt là a, b, c. (a, b, c \(\in\)N*)
Theo đề ra ta có b + c - a = 180; a : b :c = 2 : 3 : 5
=> \(\frac{a}{2}\)= \(\frac{b}{3}\)= \(\frac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}\)= \(\frac{b}{3}\)= \(\frac{c}{5}\)= \(\frac{b+c-a}{3+5-2}\)= \(\frac{180}{6}\)= 30
Suy ra: a = 30 . 2 = 60;
b = 30 . 3 = 90;
c = 30 . 5 = 150.
Vậy số học sinh Giỏi, Khá, Trung bình lần lượt là 60 em, 90 em, 150 em.
Gọi số HS giỏi,khá,trung bình lần lượt là x,y,z :
Ta có \(\frac{x+y+z}{2+3+5}\)=\(\frac{180}{10}\)=\(18\)
\(\Rightarrow\)\(\frac{x}{2}\)= 18\(\Rightarrow\)X = 2.18 = 36
\(\Rightarrow\)\(\frac{y}{3}\)=18\(\Rightarrow\)Y = 3.18 = 54
\(\Rightarrow\)\(\frac{z}{5}\)=18\(\Rightarrow\)Z = 5.18 = 90
VẬY NÊN : SH GIỎI LÀ 36 EM
SH KHÁ LÀ 54 EM
SH TB LÀ 90 EM
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{b+c-a}{3+4-2}=\dfrac{120}{5}=24\)
Do đó: a=48; b=72; c=96
Gọi a,b,c lần lượt là số học sinh giỏi, khá, trung bình của khối 7 (a,b,c ∈ N*)
Theo đề bài, ta có :
\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) và b+c-a = 120(em)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{a}{2}\) =\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=\(\dfrac{b+c-a}{3+4_{ }-2}\)=\(\dfrac{120}{5}\)=24
Từ\(\dfrac{a}{2}\)= 24 => a = 24.2 = 48
Từ \(\dfrac{b}{3}\)= 24 => b = 24.3 = 72
Từ\(\dfrac{c}{4}\)= 24 => c = 24.4 = 96
Vậy số học sinh giỏi là : 48 em
học sinh khá là : 72 em
học sinh trung bình là : 96 em
Lời giải:
Gọi số hs giỏi, khá, trung bình lần lượt là $a,b,c$
Theo bài ra ta có:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
$b+c-a=180$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30$
$\Rightarrow a=2.30=60; b=3.30=90; c=5.30=150$
Vậy số hsg là $60$ em.
Gọi số học sinh giỏi, khá, trung bình của khối 7 theo thứ tự là a, b và c.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)
\(\left[\begin{array}{nghiempt}\frac{a}{2}=30\\\frac{b}{3}=30\\\frac{c}{5}=30\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=30\times2\\b=30\times3\\c=30\times5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=60\\b=90\\c=150\end{array}\right.\)
Giải:
Gọi số học sinh giỏi, khá, trung bình lần lượt là a, b, c ( a,b,c\(\in\)N* )
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và b + c - a = 180
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy khối 7 có 60 học sinh giỏi
90 sinh khá
150 học sinh trung bình
Gọi số học sinh giỏi, khá, trung bình lấn lượt là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{b+c-a}{2+6-5}=\dfrac{180}{3}=60\)
\(\dfrac{a}{2}=60\Rightarrow a=120\\ \dfrac{b}{6}=60\Rightarrow b=360\\ \dfrac{c}{5}=60\Rightarrow c=300\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{b+c-a}{4+5-2}=\dfrac{175}{7}=25\)
Do đó: a=50; b=100; c=125