Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)
\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)
\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)
=>(n+1)(n+2-8-4)=0
=>n=-1(loại) hoặc n=10
=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)
SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)
Số hạng chứa x^26 tương ứng với 11k-40=26
=>k=6
=>Số hạng cần tìm là: \(210x^{26}\)
Số hạng tổng quát: \(C_n^k.a^k.b^{n-k}\)
+ Có : - a là: 2x2 ; b là : \(-\dfrac{1}{x^3}\); n là: 7.
Thay vào số hạng tổng quát rồi rút gọn ta đc:
\(C_7^k.\left(-1\right)^{7-k}.2.x^{5k-21}\) theo đề bài số hạng chứa x^4 => 5k-21=4 => k= 5.
Vậy số hạng tổng quát là: \(C^5_7.2\)
\(C_n^0+C_n^1+C_n^2=11\)
\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)
\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)
\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)
\(5k-8=7\Rightarrow k=3\)
Hệ số: \(C_4^3=4\)
Số hạng tổng quát trong khai triển:
\(C_{10}^k.\left(2x^3\right)^k.\left(x^{-2}\right)^{10-k}=C_{10}^k.2^k.x^{3k}.x^{2k-20}=C_{10}^k.2^k.x^{5k-20}\)
Số hạng không chứa x \(\Rightarrow5k-20=0\Rightarrow k=4\)
Số hạng đó là: \(C_{10}^4.2^4=...\)
Tổng số hạng hay tổng hệ số bạn?
Số hạng chứa x thì sao tổng bằng hằng số là 11 được
\(\left(x+1\right)^6=C^k_6.x^k\)
\(x^5\Rightarrow k=5\Rightarrow C^5_6\)
Tuong tu: \(C^5_7;C^5_8;C^5_9;C^5_{10};C^5_{11};C^5_{12}\)
\(\Rightarrow he-so:C^5_7+C^5_8+...+C^5_{12}=...\)